
LLA: Enhancing Security and Privacy for
Generative Models with Logic-Locked Accelerators

You Li*, Guannan Zhao*, Yuhao Ju, Yunqi He, Jie Gu, Hai Zhou
Northwestern University, Evanston, IL, USA

{you.li, gnzhao, yuhaoju2017, yunqi.he}@u.northwestern.edu, {jgu, haizhou}@northwestern.edu

Abstract

We introduce LLA, an effective intellectual property (IP) pro-
tection scheme for generative AI models. LLA leverages the
synergy between hardware and software to defend against
various supply chain threats, including model theft, model
corruption, and information leakage. On the software side,
it embeds key bits into neurons that can trigger outliers to
degrade performance and applies invariance transformations
to obscure the key values. On the hardware side, it integrates
a lightweight locking module into the AI accelerator while
maintaining compatibility with various dataflow patterns and
toolchains. An accelerator with a pre-stored secret key acts
as a license to access the model services provided by the
IP owner. The evaluation results show that LLA can with-
stand a broad range of oracle-guided key optimization at-
tacks, while incurring a minimal computational overhead of
less than 0.1% for 7,168 key bits.

1 Introduction
Generative AI (GenAI) is a revolutionary technology that
automatically creates a variety of content, including text, im-
ages, videos, and audio, in response to users’ input. Training
generative models requires massive data, substantial train-
ing resources, and specialized expertise. As a result, new
business models have emerged to allow clients with lim-
ited resources to access GenAI capabilities. For instance,
Inference-as-a-Service (IaaS) refers to a deployment ap-
proach in which generative models are hosted on cloud plat-
forms and accessed through APIs. In contrast, self-hosting
enables organizations to deploy models internally, offering
greater control over confidential information. In such sit-
uations, model parameters are directly exposed to various
participants in the supply chain, including cloud service
providers, network operators, and end-users. Unauthorized
use or distribution of proprietary models can cause signif-
icant financial losses to intellectual property (IP) owners.
Moreover, unrestricted access to model parameters poses
serious security risks. For example, adversarial prompts
can cause the generation of harmful or misleading con-
tent (Zhuang, Zhang, and Liu 2023; Zou et al. 2023), while
backdoor attacks can manipulate generated outputs through

*These authors contributed equally.
Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

malicious triggers embedded in compromised models (Zhao
et al. 2023; Chou, Chen, and Ho 2023).

Model locking leverages the principle of hardware root-
of-trust to defend against model theft and various supply
chain threats. It inserts key-controlled protection units into
the neural network, with the secret key stored on hardware
in a tamper-proof module (Nicholas et al. 2021; Chakraborty
and Bhunia 2009; Kamali et al. 2018). Without knowing the
correct key, an adversary cannot restore the original func-
tionality of the model. The main advantages of model lock-
ing are three-fold. Firstly, it is a proactive approach that
offers guaranteed security. In contrast, reactive approaches
such as watermarking (Kirchenbauer et al. 2023) and fin-
gerprinting (Xu et al. 2024) can provide evidence of model
ownership but cannot prevent unauthorized use of the model.
Secondly, model locking introduces minimal computational
and hardware overhead. Other proactive approaches, such as
TEE-based execution (Mo et al. 2020), parameter encryp-
tion (Lin et al. 2020), and memory encryption (Zuo et al.
2021), provide high levels of security but come with signifi-
cant computational or hardware costs. Lastly, model locking
assumes a general and realistic threat model, allowing the ar-
chitecture and all model parameters to be publicly released.
This allows the IP owner to host the model on a cloud plat-
form or send it to an end-user without compromising secu-
rity or ownership.

This paper presents LLA, a comprehensive model lock-
ing framework for generative models (Fig. 1). LLA achieves
effectiveness, robustness, and efficiency simultaneously
through an integration of software and hardware compo-
nents. In the software domain, LLA identifies feature out-
liers within an FFN module and inserts key bits to manipu-
late these outliers. As such, it can cause substantial degrada-
tion in model performance with a small number of key bits.
Moreover, it applies invariant transformations to obfuscate
key values, thus thwarting a wide range of oracle-guided at-
tacks at minimal cost. In the hardware domain, LLA embeds
a lightweight locking module within systolic array AI ac-
celerators. This module is designed to be fully compatible
with existing dataflow patterns and model formats. A pre-
activated AI accelerator can serve as a license to access all
current and future services offered by the IP owner.

Our main contributions are as follows:
• We propose LLA, the first complete method to apply

model locking on large generative models.
• We devise a systematic approach to find and construct crit-
ical components within a generative model. Locking these
components can significantly impair model functionality
while preserving the confidentiality of key values.
• We develop a lightweight solution to enable the execution
of LLA-protected models on general AI hardware.
• We conduct comprehensive experiments to evaluate the ef-
fectiveness of LLA across a diverse set of generative models,
assess its efficiency on AI hardware, and examine its robust-
ness against various attacks.

2 Background and Related Work
IP Protection for AI Models. Researchers have proposed
various methods to safeguard the IP of AI models. Water-
marking embeds hidden information into model parameters
(Uchida et al. 2017) or model outputs (Adi et al. 2018) to
prevent unauthorized use. Unfortunately, it can only pas-
sively verify the ownership of a model after it has been
stolen or infringed. Model encryption (Zhou et al. 2023; Mu
et al. 2024) prevents unauthorized access to model parame-
ters with encryption and obfuscation techniques. However,
an encrypted model must be restored to the original state
before execution, which incurs high overhead and makes it
vulnerable to side channel attacks (Li, Huang, and Zhang
2025). Model splitting isolates a subset of sensitive compu-
tations and executes them within a Trusted Execution En-
vironment (TEE) of a processor (Khan et al. 2021; Wang
et al. 2023). Its drawbacks include hardware cost, memory
constraints, and performance overhead. Homomorphic en-
cryption can guarantee the security and privacy of AI mod-
els (Gilad-Bachrach et al. 2016; Sun et al. 2018). However,
due to the extremely high computational cost, it can barely
be applied in practice.

Model locking originates from logic locking (Kamali
et al. 2022), which uses binary key bits to protect the
IP of logic circuits. Hardware-protected neural network
(HPNN) (Chakraborty, Mondai, and Srivastava 2020) per-
forms model locking in the following steps: i) selecting neu-
rons at fixed locations of hidden layers as the protected neu-
rons; ii) associating a key bit with each protected neuron
to control whether to flip the pre-activation value; iii) train-
ing the model as a function of a predetermined secret key.
NN-Lock (Alam et al. 2022; Goldstein et al. 2021) utilizes
cryptographic primitives to obfuscate the model parameters.
While these methods are highly efficient and robust, they
have several limitations in common: i) it is not clear how an
encrypted model can be executed on general AI hardware;
ii) they are designed for discriminative models rather than
large generative models. GenAI presents unique challenges
to model locking, and standard model locking techniques are
no longer effective as the model scales. For example, remov-
ing 25% of layers from Llama2-13B results in only a slight
performance drop (Men et al. 2024), and over 95% of neu-
rons in FFN modules of OPT-175B are inactive during in-
ference (Li et al. 2023).

Transformer Architecture. A decoder-only transformer
is a stack of N transformer blocks, each consisting of two

main modules: a multi-head self-attention module and a
feed-forward network (FFN) module (Fig. 2(a)). Let X ∈
RT×Dm denote the input matrix of both modules, where
T is the number of tokens and Dm is the number of fea-
tures of each token. Following the self-attention module, the
same FFN module is applied identically to each token. The
FFN module comprises two linear layers (Fig. 2(b)). The
first layer, up, expands a token’s feature vector from the
model dimension Dm to the intermediate dimension Dff .
Certain architectures incorporate a gated matrix Wgate in
parallel with the original up-projection matrix Wup, and the
output vectors of the two matrices are subsequently com-
bined through element-wise multiplication. A non-linear ac-
tivation layer, act, is applied between the two linear layers.
Finally, the second layer, down, projects the expanded vector
from the intermediate space back to the hidden state space.

Outliers in GenAI Models. Outliers refer to abnormally
large values within GenAI models (Dettmers et al. 2022;
Kovaleva et al. 2021). Weight outliers appear in specific
columns of the down-projection matrices of the feed-
forward network (FFN), Wdown. Feature outliers concen-
trate in the block output vectors and the input vectors of
the down-projection matrices, xdown (Sun et al. 2024). Both
types of outliers are strongly correlated and persistent in that
they are almost always located in the same feature dimen-
sion across different layers (An et al. 2025). Outliers typi-
cally emerge in the second block and gradually vanish in the
final blocks of a model. Outliers are disproportionately im-
portant to model performance (Yin et al. 2024). According
to a study on Llama-7B, suppressing only six top outliers
has a greater impact than pruning hundreds of thousands of
normal weights (Yu et al. 2024).

Threat Model. Our adversary model is similar to those
in previous work on hardware-based model protection. The
adversary could be a collusion of malicious end-users, cloud
service providers, and network service providers. Its objec-
tive is to use the model without the permission of the IP
owner or launch a white-box attack against the model. The
adversary can i) directly access the model architecture and
all the model parameters; ii) query the oracle model through
a cloud API or an activated AI hardware; iii) obtain a small
portion of the training dataset. However, the adversary can-
not read or probe the secret key stored in the AI hardware,
nor can they run an unauthorized model on the AI hardware.
In practice, the secret key can be stored in or derived from
a tamper-proof memory (Tuyls et al. 2006), a trusted plat-
form module (TPM) (Nicholas et al. 2021), a physical un-
clonable function (PUF) (Chakraborty and Bhunia 2009), an
FPGA bitstream (Kamali et al. 2018), or a camouflaged cir-
cuit layout (Li et al. 2017). The adversary aims to either infer
the correct key or restore the functionality of the generative
model without knowing the correct key.

3 Locking Methodology
3.1 Overview
LLA is a post-training model locking approach. Unlike ex-
isting approaches such as HPNN (Chakraborty, Mondai, and

Key
Obfuscation

Pre-trained
Model

Pre-selected
Secret Key

AI
Accelerator

Key
Embedding

Model Post-
processing

Encrypted
Model

Activated
Accelerator

Key
Insertion

Figure 1: Workflow of the LLA model locking framework.

Self-
Attention

Add & Norm

Feed-Forward
Network (FFN)

N×
act

up

down

FFNAdd & Norm
weighted sum

inner product
input vector

(a) (b)

Permutation
Fabric

Permutation
Fabriclock

Figure 2: (a) Architecture of a transformer block. (b) Sim-
plified illustration of the proposed locking mechanism. LLA
embeds key bits into permutation modules inserted before
the down-projection layer, which shuffle intermediate values
to alter the model’s functionality.

Srivastava 2020), it does not require additional training re-
sources and can be applied to existing models. LLA aims to
achieve the following objectives simultaneously:
• Effectiveness: A wrong key will substantially degrade the
performance of the GenAI model.
• Efficiency: The locking scheme introduces a small number
of key bits and incurs negligible performance, power and
area overhead.
• Robustness: An adversary cannot decrypt or bypass the se-
cret key to restore the performance of the model.
• Hardware friendliness: The locking scheme can be easily
adapted to general AI hardware and requires minimal modi-
fications to both the hardware architecture and the compiler.

The general workflow of the proposed LLA framework is
shown in Fig. 1. LLA exploits the synergy of software and
hardware to achieve these objectives. At the software level,
LLA embeds key bits in the intermediate layer of the FFN
module (§3.2). To maximize corruption to model perfor-
mance, it selects protected neurons by tracking feature out-
liers of the model. Afterwards, it employs obfuscation tech-
niques dedicated to GenAI models (§3.3) to protect them
from oracle-guided attacks and fine-tuning attacks. Finally,
LLA adjusts the model parameters according to the key val-
ues. The resulting encrypted model can be sent to the user
through a public channel and is functional only with a cor-

rect key. At the hardware level (§3.4), LLA attaches locking
units to the output of the systolic array of an AI accelera-
tor. With a lightweight control unit, LLA dispatches the pro-
tected neurons on the fly and triggers the locking units when
they reach the output of the systolic array. As such, it does
not depend on specific AI compilers and can be easily in-
tegrated with most AI accelerators. An accelerator with the
inserted secret key serves as a license to access the service
provided by the IP owner.

3.2 Key Embedding
Locking Mechanism. LLA designates a transformer
block as the protected block and selects a subset of neu-
rons within its FFN module as protected neurons. The se-
lected neurons are divided into groups with size m, and
the post-activation values within each group are shuffled us-
ing a key-controlled permutation fabric. Figure 2 illustrates
the locking mechanism of LLA, which offers three key ad-
vantages. i) Localized permutation is agnostic to the input
data type and can be efficiently implemented in hardware.
Programmable Array Logic (PAL) (Takhar et al. 2022) and
embedded FPGA (eFPGA) (Tang et al. 2019) can be con-
figured to implement interconnections, while butterfly net-
works (Beneš 1964) can realize arbitrary permutations based
on control bits. ii) Shuffling an FFN’s intermediate values
can lead to a more substantial degradation in model perfor-
mance. Notably, FFN modules act as crucial memory ele-
ments in GenAI models (Geva et al. 2021), and the same
FFN module is applied repeatedly to all tokens in an in-
put sequence. iii) Placing all key bits within a single block
can enhance resilience against a broad spectrum of attacks.
Specifically, the discrete nature and high redundancy of the
permutation fabric enhance its resilience to gradient-based
key decryption attacks. §4 provides a detailed security anal-
ysis of LLA.

Identify Protected Neurons. GenAI models contain bil-
lions of parameters, making them inherently robust to ran-
dom perturbations. As a result, altering a small subset of
randomly selected parameters has a minimal effect on the
model outputs. Recent studies reveal that a small number
of outliers are disproportionally important to model perfor-
mance. In the following, we present a lightweight approach
for selecting protected neurons within the FFN module of a
designated transformer block. Intuitively, a neuron can have
a significant impact if it can trigger weight outliers within
Wdown, which then propagate to the hidden state space and
produce feature outliers. We trace outliers in reverse to find
such critical neurons. In the first step, we randomly generate
a batch of input samples and perform forward passes through
the model to identify feature outliers within the output vec-
tor of the FFN module:

Of = {i | ȳi > τ · µy}, (1)

where ȳi is the average magnitude of the i-th feature pro-
duced by the designated FFN module, µy ≜ 1

Dm

∑Dm

i=1 ȳi is
the mean of these average magnitudes, and τ is the threshold
that controls the number of selected features. In the second

step, we rank the impact of individual neurons based on the
following scoring function:

sj =
∑

i∈Of
|Wdown

j,i | · ūj , (2)

where ūj is the average magnitude of the post-activation
value of the j-th neuron. sj estimates the contribution of the
j-th neuron to the features selected in the first step. Neurons
with the highest scores are selected as candidate protected
neurons.

As discussed in §2, feature outliers tend to persist at
the same location across consecutive transformer blocks. To
prevent information leakage from earlier blocks, we choose
the first block exhibiting emergent feature outliers as the
protected block.

3.3 Key Obfuscation
Outlier features are disproportionally important for model
performance. Therefore, an adversary can launch an approx-
imate oracle-guided attack to recover most of the model’s
functionality. For example, it can identify a small subset of
critical neurons by iteratively flipping or muting each pro-
tected neuron and measuring the impact on the model’s out-
put. Subsequently, it enumerates all permutations of the sub-
set and selects the one that minimizes the discrepancy with
the oracle model (Li et al. 2024). In this way, the adversary
can quickly find an approximately correct permutation, as
the remaining neurons have only a negligible effect on the
overall model performance.

We propose an obfuscation method to address this issue.
Our technique aims to i) smooth the features in the interme-
diate layer of the protected block, so that each key bit has a
similar impact on model performance; ii) enhance the cor-
relations among the key bits, so that the quality of model
outputs depends on as many key bits as possible. LLA uti-
lizes a sequence of orthogonal transformations (Ashkboos
et al. 2024b; Lin et al. 2024; Ashkboos et al. 2024a) to real-
ize these goals. An orthogonal matrix M is a square matrix
such that MM⊤ = I. Hence, an orthogonal matrix and its
transpose can be inserted before and after a sequence of lin-
ear layers without changing the functionality of the model.
We present the details of our obfuscation method in the re-
mainder of this subsection.

Permutation of Outliers. In the first step, we build an or-
thogonal permutation matrix P to reorder neurons within the
designated FFN module. Concretely,

P = P1 · · ·Pn, (3)

where Pj swaps the j-th protected neuron (§3.2) with the
j-th neuron in the original FFN module. After this step, the
identified outlier features are repositioned to the front of the
feature dimension.

Rotation of Features. In the second step, we construct an
orthogonal rotation matrix R as follows:

R =

[
H 0
0 I

]
, (4)

where H is a randomized Hadamard matrix (Tseng et al.
2024; Ashkboos et al. 2024b) and I is an identity matrix. H

0 50 100 150 200 250Protected Neuron Index
0

60
120

Token Index
0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8

Va
lu

e

(a)

0 50 100 150 200 250Protected Neuron Index
0

60
120

Token Index
0.8
0.6
0.4
0.2

0.0
0.2
0.4
0.6
0.8

Va
lu

e

(b)

Figure 3: (a) Feature outliers are prominent before the ap-
plication of R; (b) Feature outliers are eliminated after the
application of R.

is constructed by scaling an n-dimensional Hadamard ma-
trix with 1√

n
, then multiplying it with a random diagonal

matrix with entries independently sampled from {−1, 1}. A
Hadamard matrix is a square matrix whose entries are ei-
ther −1 or 1 and whose rows are mutually orthogonal. An
n-dimensional Hadamard matrix is guaranteed to exist if n
is a power of 2, and it is known to exist for almost all n that
is a multiple of 4 and less than 1000 (Wallis 1976). R is in-
serted after the activation layer for a standard FFN module,
or after the element-wise multiplication operator for a gated
FFN module. Fig. 3 visualizes the smoothing effect of the
rotation matrix.

The rotation transformation has the following benefits:
i) it evenly distributes the effects of outlier features across
the first n dimensions by smoothing their magnitudes; ii)
it enhances the interdependence among key bits, thereby
obscuring the statistical relationships between key bits and
model outputs (Shannon 1949); iii) it discretizes the effects
of outlier features in the output space of R, thus mitigating
gradient-based oracle-guided attacks.

Insertion of Keys. In the third step, we create an orthog-
onal key matrix K given a permutation π that rearrange n
elements:

K =

[
G 0
0 I

]
, (5)

where G is also a permutation matrix. Each element Gi,j is
equal to 1 if π(i) = j, and 0 otherwise. To reduce hardware
complexity, we further require that π can be partitioned into
disjoint groups, each of which is a permutation of m ele-
ments. As a result, the computation of G can be realized
using key-controlled permutation fabrics of size m. We elab-
orate on the hardware support in §3.4.

Obfuscation with Orthogonal Transformations.
A standard FFN module can be expressed as
Y = σ(XWup)Wdown, where σ denotes the element-
wise activation function, X represents the input matrix of
the FFN module, and Y represents the corresponding output
matrix. The overall obfuscation method can be summarized
as the following:

Y = σ(XWupP)RK(K⊤R⊤P⊤Wdown). (6)

After commuting P with σ(·), each orthogonal matrix is
canceled by its transpose, so the final output after transfor-

Buffer (Weights, K, V)

Bu
ffe

r (
In

pu
ts

, Q
)

C
on

tro
lle

r

Accumulators / Vector Units

H
os

t C
PU

Locking
Unit

Transposer

Bu
ffe

r
(I

np
ut

s,
Q
)

Tr
ig

ge
r

Lo
gi

c
C

yc
le

C
ou

nt
er

Permutation
Fabric

Permutation
Fabric

Switch Switch

Switch Switch

Switch Switch

Systolic Array

Figure 4: Schematic of a systolic AI accelerator that supports
model locking.

mations remains unchanged. To reduce computational cost,
we merge all orthogonal matrices within the same parenthe-
ses into Wup or Wdown, resulting in the following transfor-
mations:

Y = σ(XW̃up)RK(W̃down). (7)
As shown in Formula 4, the main component of R is a

randomized Hadamard matrix H, whose dimensionality cor-
responds to the key size n. In contrast, the dimensionality of
R matches the intermediate dimension Dff of the FFN mod-
ule, which is typically on the order of 10,000 or higher in
modern GenAI models (Dubey et al. 2024). Therefore, when
the key size is on the order of hundreds, the computational
overhead caused by R is negligible. Notice that the random
diagonal matrix within R⊤ introduces additional confusion
to W̃down, helping to offset the potential information leakage
caused by K⊤.

The above method can also be applied to a gated FFN
module by distributing P to both Wup and Wgate.

3.4 Hardware Support
Systolic Array Architecture. The systolic array is the
core computational module in modern AI accelerators (Chen
et al. 2020; Ju and Gu 2022). It comprises a mesh of in-
terconnected process elements (PEs), each performing a
scalar multiplication and accumulation (MAC) operation in
a clock cycle. Weight-stationary and output-stationary are
two representative dataflow schemes of systolic arrays. In

the weight-stationary scheme, a tile of the weight matrix
is retained with the PEs, whereas the input matrix and the
partial sums are streamed through the PEs during compu-
tation. In the output-stationary scheme, the partial sums are
retained within the PEs, while the input and weight matrices
are streamed through the PEs.

Hardware Design. LLA is designed to be agnostic to
specific AI compilers or accelerators. Fig. 4(left) illustrates
the architecture of a systolic array accelerator that supports
model locking. The locking module consists of several per-
mutation fabrics, each shuffling a fixed number of consecu-
tive output lanes of the systolic array. This additional mod-
ule is responsible for performing the multiplication with the
key matrix K. Fig. 4(right) shows an implementation of a
4×4 permutation fabric with a key-controlled Benes net-
work (Beneš 1964). The network comprises multiple stages
of 2×2 switches, each controlled by a key bit that determines
whether to pass through or swap the two input signals. The
trigger logic is inactive when the systolic array computes
any matrix other than the key matrix K. In that case, it out-
puts the default key pattern that preserves the original order
of all lanes. When the systolic array computes the K ma-
trix, the trigger unit introduces specific delays to each out-
put lane based on the dataflow schemes, ensuring that the
signals reach the permutation fabric within the same clock
cycle. Meanwhile, it configures the routing of the Benes net-
work with input key bits to realize the desired permutation.
Weight-stationary systolic arrays may compute an output
matrix in multiple rounds by accumulating several interme-
diate matrices. LLA applies the same key to each intermedi-
ate matrix to achieve the intended result.

4 Experiment and Analysis
Setup. We apply the proposed LLA model locking ap-
proach to four pre-trained LLMs from the Minitron fam-
ily (Muralidharan et al. 2024). These models represent dif-
ferent types of FFNs with varying sizes. Their statistics are
summarized in Table 1. As model size increases, LLMs tend
to exhibit more feature outliers (Dettmers et al. 2022), which
in turn raises the cost of successful attacks (Li et al. 2024).
Consequently, the positive results observed on these rela-
tively small models indicate that LLA can be more effec-
tive when applied to larger models. All experiments are con-
ducted on a Linux workstation with a 2.4 GHz CPU and an
NVIDIA RTX A6000 GPU.

We use MMLU and perplexity to evaluate the capabili-
ties of LLMs. A higher MMLU score or a lower perplex-
ity indicates better performance. Fidelity is defined as the
proportion of protected neurons whose original indices are
restored by an attacking algorithm. We choose the Jensen-
Shannon divergence (JSD) to measure the similarity between
the output distributions of the encrypted model and the ora-
cle model.

The primary threat to model locking is the oracle-guided
(OG) attack. In this setting, an adversary can query the or-
acle model with any input sequence and observe the corre-
sponding output logits. If the oracle model is unavailable,
the adversary can instead launch a pretraining-style oracle-

256 512 1024 2048 4096 8192
Protected Neurons

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Sa

m
pl

ed
 M

M
LU

HPNN

256 512 1024 2048 4096 8192
Protected Neurons

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Sa
m

pl
ed

 M
M

LU

LLA

Llama-3.1
Minitron 4B W
(Original)

Minitron 4B
(Original)

Minitron 8B
(Original)

Mistral NeMo
Minitron 8B
(Original)

Figure 5: Pre-attack locking effectiveness: LLA vs. HPNN.

256 512 1024 2048 4096 8192
Protected Neurons

103

104

105

Ke
y

Si
ze

 (b
its

)

Group Size = 16
Group Size = 4
Full Permutation

256 512 1024 2048 4096 8192
Protected Neurons

0.001%

0.01%

0.1%

1%

FL
OP

 O
ve

rh
ea

d

FLOP Overhead

Figure 6: Locking efficiency: key size and FLOP overhead.

less (OL) attack using a curated dataset. We consider two
prevalent optimization techniques for key decryption. The
genetic-based attack (Alam et al. 2022) iteratively evolves
the candidate key pattern in the binary key space. Our im-
plementation employs the tournament selection mechanism,
uses JSD as the fitness function, applies within-group pair-
wise swaps as the mutation operator, and performs crossover
across permutation groups. For the gradient-based attack (Li
et al. 2024), existing methods cannot be applied directly to
the permutation fabric. According to our experiments, the
most effective way is to directly restore the permutation ma-
trix G. Specifically, we use a softmax function to approxi-
mate each column of the matrix. Upon completion, the ele-
ment with the highest magnitude is set to 1, and the remain-
ing elements are set to 0. We use Adam optimization with
a learning rate of 0.03. We choose JSD as the loss function
for the OG attack and cross-entropy for the OL attack. We
observe that the gradient-based attack is consistently more
effective than the genetic-based attack. Therefore, our eval-
uation focuses primarily on the former attack. We set a time
limit of 7,200 seconds for every execution.

We assess LLA with various numbers of protected neu-
rons, ranging from 256 to 8192. By default, the permutation
group size is set to 16. We configure the outlier threshold τ
to 5, which can be increased for larger generative models.
Based on the emergence of outliers, we select the first block
of Mistral NeMo Minitron 8B and the second block
of the other three models as protected blocks.

Results. We systematically evaluate LLA in terms of its
effectiveness, efficiency, and robustness. First, we assess
the locking effectiveness of LLA by comparing it with
HPNN (Chakraborty, Mondai, and Srivastava 2020), the

256 512 1024 2048 4096 8192
Protected Neurons

0.45

0.50

0.55

0.60

0.65

M
M

LU

256 512 1024 2048 4096 8192
Protected Neurons

2

3

4

5

Pe
rp

le
xi

ty

Llama-3.1
Minitron 4B W
(Original)

Minitron 4B
(Original)

Minitron 8B
(Original)

Mistral NeMo
Minitron 8B
(Original)

Figure 7: Locking robustness: performance of LLA-
protected models after the OG gradient-based attack.

256 512 1024 2048 4096 8192
Protected Neurons

0.20

0.15

0.10

0.05

0.00

 M
M

LU

256 512 1024 2048 4096 8192
Protected Neurons

0

1

2

3

 P
er

pl
ex

ity

Group Size = 16, Gradient, OG
Full Permutation, Gradient, OG
Group Size = 16, Genetic, OG

Group Size = 4, Gradient, OG
Group Size = 16, Gradient, OL

Figure 8: Locking robustness: performance of LLA-
protected models under various attack and defense settings
(averaged across 4 models).

state-of-the-art model locking technique. For each locking
configuration, we report the average model performance
across 10 randomly generated key patterns. As shown in Fig-
ure 5, HPNN causes only a slight performance degradation
in most configurations. In contrast, LLA consistently renders
the models unusable in all configurations.

Second, we measure the locking efficiency of LLA in
terms of key length and computational overhead (Figure 6).
For a fixed permutation group size, the key length grows lin-
early with the number of protected neurons. LLA requires
3.5 key bits per protected neuron for a group size of 16 and
1.5 bits per neuron for a group size of 4. On the other hand,
the computational overhead in FLOP count is negligible,
especially for smaller key sizes. The effectiveness and ef-
ficiency of LLA can be attributed to its ability to manipulate
outliers and absorb orthogonal matrices.

Third, we evaluate the locking robustness of LLA by
testing it against the aforementioned genetic-based and
gradient-based attacks. For each configuration, we report
the best attack result observed across three attempts. As de-
picted in Figure 7, post-attack performance varies by model
type, but robustness consistently improves as the key length
increases. The fidelity (Figure 10(right)) never exceeds 86%
for a small key length (256 protected neurons) and 38% for
a large key length (8192 protected neurons), suggesting that
an adversary cannot recover the original functionality of the
model. We further analyze the robustness of LLA under var-

Model FFN Type Original Perf.
Dm ×Dff MMLU Perplexity

Minitron 4B
standard 0.546 5.443072 × 9216

Minitron 8B
standard 0.609 3.144096 × 16384

Llama-3.1 gated 0.582 4.32
Minitron 4B W 3072 × 9216
Mistral Nemo gated 0.652 1.73
Minitron 8B 4096 × 11520

Table 1: LLMs used for evaluation.

w/o
i)

w/o
ii)

w/o
iii)

w/o
iv)

LLA
as-is

0.0

0.2

0.4

0.6

Sa
m

pl
ed

 M
M

LU

w/o
i)

w/o
ii)

w/o
iii)

w/o
iv)

LLA
as-is

0

5

10

15

20

lo
g 2

(P
er

pl
ex

ity
)

Figure 9: Ablation study: pre-attack performance of
Mistral NeMo Minitron 8B under various LLA
configurations. The dashed lines indicate the performance
of the original model.

ious attack and defense settings (Figure 8). We observe that
i) robustness can be enhanced with a greater permutation
group size, though it comes at the expense of increased key
length; ii) the gradient-based attack outperforms the genetic-
based attack; iii) OG attacks are more effective than OL at-
tacks when other configurations are the same.

Ablation Study. We conduct an ablation study to iden-
tify the key factors that contribute to the effectiveness and
robustness of LLA. Specifically, we examine the following
factors: i) selection of the protected block, ii) selection of the
protected neurons, iii) application of the rotation matrix, and
iv) use of permutation-based locking instead of negation-
based locking. We select HPNN as the baseline method.

We compare the locking effectiveness across various LLA
configurations in a non-adversarial setting. For each config-
uration, we randomly generate 100 key patterns and plot the
corresponding model performance in Fig. 9. Removing ei-
ther i) or ii) leads to minimal performance degradation, high-
lighting the critical role of outlier features. Removing iii)
still allows certain key patterns to maintain relatively high
performance. Further analysis reveals that these patterns re-
tain the original positions of most critical neurons, expos-
ing the vulnerability of model locking under insufficient ob-
fuscation. The last two configurations consistently degrade
model performance across all key patterns, demonstrating
their effectiveness in a non-adversarial setting.

Finally, we evaluate the locking robustness of the last two
configurations in Fig. 9. The negation-based locking scheme
was first proposed by HPNN, and the permutation-based
locking scheme was introduced by LLA. For the negation-
based locking scheme, we replace every key bit with a tanh
function during the attack. Upon convergence, the key bits

256 512 1024 2048 4096 8192
Protected Neurons

0

25

50

75

100

Fid
el

ity
 (%

)

Negation-Based

256 512 1024 2048 4096 8192
Protected Neurons

0

25

50

75

100

Fid
el

ity
 (%

)

Permutation-Based

Llama-3.1
Minitron 4B W Minitron 4B Minitron 8B Mistral NeMo

Minitron 8B

Figure 10: Ablation study: comparing the locking robustness
of negation-based and permutation-based locking schemes.

with negative values are set to true, while the remaining
bits are set to false (Li et al. 2024). Figure 10 compares
the post-attack fidelity of the two schemes. The negation-
based scheme is more vulnerable to gradient-based attacks.
Notably, the adversary can even recover 100% of key bits for
the Llama-3.1 Minitron 4B W model under various
settings. Therefore, the permutation-based scheme is neces-
sary to ensure the robustness of model locking.

Security Analysis. As discussed previously, LLA-
protected models are resistant to oracle-guided key
optimization attacks. Alternatively, an adversary may fix
a key value and launch oracle-guided fine-tuning attacks
to improve model performance. However, training with
an incorrectly fixed key can be more costly than training
from scratch. LLA is also resistant to probing attacks
and various side-channel attacks because: i) there are
only delay registers between the systolic array and the
locking module, and ii) the execution of a protected model
follows a fixed pattern that is independent of the key value.
The adversary may exploit the geometric and algebraic
properties of neural networks to launch oracle-guided
geometric attacks (Li et al. 2024). LLA can thwart these
attacks because: i) all key bits are placed within the same
intermediate layer, which has a larger dimension Dff than
the input dimension Dm; geometric attacks are ineffective
on expansive layers. ii) The key bits are tightly correlated
due to orthogonal transformations, whereas geometric
attacks rely on a divide-and-conquer strategy to reduce
computational complexity.

5 Conclusion and Future Work
This paper presents LLA, the first model locking method
tailored for large generative models. It brings together a set
of techniques, including outlier selection, key obfuscation,
and systolic array hardware support, to safeguard the sup-
ply chain of generative models. Experiments demonstrate
that LLA can mitigate a wide range of attacks, particularly
oracle-guided key optimization attacks, at a minimal com-
putational and hardware cost. Limitations of this work in-
clude: i) it is not as effective on tiny generative models where
prominent outliers are absent; ii) an adversary with sufficient
computational resources may leverage model distillation to
replace the entire protected block. We plan to address these
challenges in future work.

Acknowledgments
This work is partially supported by the National Science
Foundation under grants 2113704 and 2148177.

References
Adi, Y.; Baum, C.; Cisse, M.; Pinkas, B.; and Keshet, J.
2018. Turning your weakness into a strength: Watermarking
deep neural networks by backdooring. In USENIX Security
2018.
Alam, M.; Saha, S.; Mukhopadhyay, D.; and Kundu, S.
2022. NN-Lock: A lightweight authorization to prevent IP
threats of deep learning models. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 18(3): 1–19.
An, Y.; Zhao, X.; Yu, T.; Tang, M.; and Wang, J. 2025. Sys-
tematic Outliers in Large Language Models.
Ashkboos, S.; Croci, M. L.; do Nascimento, M. G.; Hoe-
fler, T.; and Hensman, J. 2024a. SliceGPT: Compress Large
Language Models by Deleting Rows and Columns.
Ashkboos, S.; Mohtashami, A.; Croci, M.; Li, B.; Cameron,
P.; Jaggi, M.; Alistarh, D.; Hoefler, T.; and Hensman, J.
2024b. Quarot: Outlier-free 4-bit inference in rotated llms.
NIPS 2024.
Beneš, V. E. 1964. Permutation groups, complexes, and rear-
rangeable connecting networks. Bell System Technical Jour-
nal, 43(4): 1619–1640.
Chakraborty, A.; Mondai, A.; and Srivastava, A. 2020.
Hardware-assisted intellectual property protection of deep
learning models. In DAC 2020.
Chakraborty, R. S.; and Bhunia, S. 2009. HARPOON: An
obfuscation-based SoC design methodology for hardware
protection. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 28(10): 1493–1502.
Chen, Y.; Xie, Y.; Song, L.; Chen, F.; and Tang, T. 2020. A
survey of accelerator architectures for deep neural networks.
Engineering, 6(3): 264–274.
Chou, S.-Y.; Chen, P.-Y.; and Ho, T.-Y. 2023. How to back-
door diffusion models? In CVPR 2023.
Dettmers, T.; Lewis, M.; Belkada, Y.; and Zettlemoyer, L.
2022. Gpt3. int8 (): 8-bit matrix multiplication for trans-
formers at scale. NIPS 2022.
Dubey, A.; Jauhri, A.; Pandey, A.; Kadian, A.; Al-Dahle, A.;
Letman, A.; Mathur, A.; Schelten, A.; Yang, A.; Fan, A.;
et al. 2024. The llama 3 herd of models. arXiv:2407.21783.
Geva, M.; Schuster, R.; Berant, J.; and Levy, O. 2021. Trans-
former Feed-Forward Layers Are Key-Value Memories. In
EMNLP 2021.
Gilad-Bachrach, R.; Dowlin, N.; Laine, K.; Lauter, K.;
Naehrig, M.; and Wernsing, J. 2016. Cryptonets: Applying
neural networks to encrypted data with high throughput and
accuracy. In ICML 2016.
Goldstein, B. F.; Patil, V. C.; Ferreira, V. C.; Nery, A. S.;
França, F. M.; and Kundu, S. 2021. Preventing DNN model
IP theft via hardware obfuscation. IEEE Journal on Emerg-
ing and Selected Topics in Circuits and Systems, 11(2): 267–
277.

Ju, Y.; and Gu, J. 2022. A 65nm systolic neural CPU proces-
sor for combined deep learning and general-purpose com-
puting with 95% PE utilization, high data locality and en-
hanced end-to-end performance. In ISSCC 2022.
Kamali, H. M.; Azar, K. Z.; Farahmandi, F.; and Tehra-
nipoor, M. 2022. Advances in logic locking: Past, present,
and prospects. Future Microelectronics Security Research
Series.
Kamali, H. M.; Azar, K. Z.; Gaj, K.; Homayoun, H.; and
Sasan, A. 2018. Lut-lock: A novel lut-based logic obfus-
cation for fpga-bitstream and asic-hardware protection. In
ISVLSI 2018.
Khan, N.; Nitzsche, S.; López, A. G.; and Becker, J.
2021. Utilizing and extending trusted execution environ-
ment in heterogeneous SoCs for a pay-per-device IP licens-
ing scheme. IEEE Transactions on Information Forensics
and Security, 16: 2548–2563.
Kirchenbauer, J.; Geiping, J.; Wen, Y.; Katz, J.; Miers, I.;
and Goldstein, T. 2023. A watermark for large language
models. In ICML 2023.
Kovaleva, O.; Kulshreshtha, S.; Rogers, A.; and Rumshisky,
A. 2021. Bert busters: Outlier dimensions that disrupt trans-
formers. arXiv:2105.06990.
Li, M.; Shamsi, K.; Meade, T.; Zhao, Z.; Yu, B.; Jin, Y.; and
Pan, D. Z. 2017. Provably secure camouflaging strategy for
IC protection. IEEE transactions on computer-aided design
of integrated circuits and systems, 38(8): 1399–1412.
Li, P.; Huang, J.; and Zhang, S. 2025. LicenseNet:
Proactively safeguarding intellectual property of AI mod-
els through model license. Journal of Systems Architecture,
159: 103330.
Li, Y.; Zhao, G.; He, Y.; and Zhou, H. 2024. Evaluating the
Security of Logic Locking on Deep Neural Networks. In
DAC 2024.
Li, Z.; You, C.; Bhojanapalli, S.; Li, D.; Rawat, A. S.; Reddi,
S. J.; Ye, K.; Chern, F.; Yu, F.; Guo, R.; et al. 2023. The Lazy
Neuron Phenomenon: On Emergence of Activation Sparsity
in Transformers. In ICLR 2023.
Lin, H.; Xu, H.; Wu, Y.; Cui, J.; Zhang, Y.; Mou, L.; Song,
L.; Sun, Z.; and Wei, Y. 2024. Duquant: Distributing out-
liers via dual transformation makes stronger quantized llms.
NIPS 2024.
Lin, N.; Chen, X.; Lu, H.; and Li, X. 2020. Chaotic weights:
A novel approach to protect intellectual property of deep
neural networks. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 40(7): 1327–
1339.
Men, X.; Xu, M.; Zhang, Q.; Wang, B.; Lin, H.; Lu,
Y.; Han, X.; and Chen, W. 2024. Shortgpt: Layers in
large language models are more redundant than you expect.
arXiv:2403.03853.
Mo, F.; Shamsabadi, A. S.; Katevas, K.; Demetriou, S.;
Leontiadis, I.; Cavallaro, A.; and Haddadi, H. 2020. Dark-
netz: towards model privacy at the edge using trusted execu-
tion environments. In MobiSys 2020.

Mu, X.; Wang, Y.; Huang, Z.; Lai, J.; Zhang, Y.; Wang, H.;
and Yu, Y. 2024. EncryIP: A Practical Encryption-Based
Framework for Model Intellectual Property Protection. In
AAAI 2024.
Muralidharan, S.; Turuvekere Sreenivas, S.; Joshi, R.; Cho-
chowski, M.; Patwary, M.; Shoeybi, M.; Catanzaro, B.;
Kautz, J.; and Molchanov, P. 2024. Compact language mod-
els via pruning and knowledge distillation. NIPS 2024.
Nicholas, G. S.; Siddiqui, A. S.; Joseph, S. R.; Williams, G.;
and Saqib, F. 2021. A secure boot framework with multi-
security features and logic-locking applications for recon-
figurable logic. Journal of Hardware and Systems Security,
5(3): 260–268.
Shannon, C. E. 1949. Communication theory of secrecy sys-
tems. The Bell system technical journal, 28(4): 656–715.
Sun, M.; Chen, X.; Kolter, J. Z.; and Liu, Z. 2024. Mas-
sive Activations in Large Language Models. In ICLR 2024
Workshop on Mathematical and Empirical Understanding
of Foundation Models.
Sun, X.; Zhang, P.; Liu, J. K.; Yu, J.; and Xie, W. 2018. Pri-
vate machine learning classification based on fully homo-
morphic encryption. IEEE Transactions on Emerging Topics
in Computing, 8(2): 352–364.
Takhar, G.; Karri, R.; Pilato, C.; and Roy, S. 2022. HOLL:
Program synthesis for higher order logic locking. In TACAS
2022.
Tang, X.; Giacomin, E.; Alacchi, A.; Chauviere, B.; and
Gaillardon, P.-E. 2019. OpenFPGA: An opensource frame-
work enabling rapid prototyping of customizable FPGAs. In
FPL 2019.
Tseng, A.; Chee, J.; Sun, Q.; Kuleshov, V.; and De Sa,
C. 2024. QuIP #: Even Better LLM Quantization with
Hadamard Incoherence and Lattice Codebooks.
Tuyls, P.; Schrijen, G.-J.; Škorić, B.; Van Geloven, J.; Ver-
haegh, N.; and Wolters, R. 2006. Read-proof hardware from
protective coatings. In 8th International Workshop of Cryp-
tographic Hardware and Embedded Systems, CHES 2006.
Uchida, Y.; Nagai, Y.; Sakazawa, S.; and Satoh, S. 2017.
Embedding watermarks into deep neural networks. In Pro-
ceedings of the 2017 ACM on international conference on
multimedia retrieval.
Wallis, J. S. 1976. On the existence of Hadamard matrices.
Journal of Combinatorial Theory, Series A, 21(2): 188–195.
Wang, C.; Deng, Y.; Ning, Z.; Leach, K.; Li, J.; Yan, S.;
He, Z.; Cao, J.; and Zhang, F. 2023. Building a lightweight
trusted execution environment for arm gpus. IEEE Transac-
tions on Dependable and Secure Computing, 21(4): 3801–
3816.
Xu, J.; Wang, F.; Ma, M. D.; Koh, P. W.; Xiao, C.; and Chen,
M. 2024. Instructional fingerprinting of large language mod-
els. arXiv:2401.12255.
Yin, L.; Wu, Y.; Zhang, Z.; Hsieh, C.-Y.; Wang, Y.; Jia, Y.;
Li, G.; Jaiswal, A.; Pechenizkiy, M.; Liang, Y.; et al. 2024.
Outlier Weighed Layerwise Sparsity (OWL): A Missing Se-
cret Sauce for Pruning LLMs to High Sparsity. In ICML
2024.

Yu, M.; Wang, D.; Shan, Q.; and Wan, A. 2024. The Super
Weight in Large Language Models. arXiv:2411.07191.
Zhao, S.; Wen, J.; Luu, A.; Zhao, J.; and Fu, J. 2023. Prompt
as Triggers for Backdoor Attack: Examining the Vulnerabil-
ity in Language Models. In EMNLP 2023.
Zhou, T.; Luo, Y.; Ren, S.; and Xu, X. 2023. NNSplitter:
an active defense solution for DNN model via automated
weight obfuscation. In ICML 2023.
Zhuang, H.; Zhang, Y.; and Liu, S. 2023. A pilot study
of query-free adversarial attack against stable diffusion. In
CVPR 2023.
Zou, A.; Wang, Z.; Carlini, N.; Nasr, M.; Kolter, J. Z.; and
Fredrikson, M. 2023. Universal and transferable adversarial
attacks on aligned language models. arXiv:2307.15043.
Zuo, P.; Hua, Y.; Liang, L.; Xie, X.; Hu, X.; and Xie, Y.
2021. Sealing neural network models in encrypted deep
learning accelerators. In DAC 2021.

