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Abstract—A refinement relation captures the state equivalence between
two sequential circuits. It finds applications in various tasks of VLSI
design automation, including regression verification, behavioral model
synthesis, assertion synthesis, and design space exploration. However,
manually constructing a refinement relation requires an engineer to
have both domain knowledge and expertise in formal methods, which is
especially challenging for complex designs after significant transforma-
tions. This paper presents a rigorous and efficient sequential equivalence
checking algorithm for non-cycle-accurate designs. The algorithm can
automatically find a concise and human-comprehensible refinement
relation between two designs, helping engineers understand the essence of
design transformations. We demonstrate the usefulness and efficiency of
the proposed algorithm with experiments and case studies. In particular,
we showcase how refinement relations can facilitate error detection and
correction for LLM-generated RTL designs.

I. INTRODUCTION

Design engineers and optimization tools are performing even
more aggressive sequential transformations to meet the growing
demands of high performance and low power consumption. Ex-
amples of sequential transformations include retiming, pipelining,
pre-computation, resource reallocation, clock gating, and memory
partitioning. Recently, adaptive pipelining and latency-insensitive
design methodologies have been proposed to further improve the
throughput of high-performance integrated circuits. These techniques
can cause irregular data dependencies and dynamic latencies [1] and
are prone to error.

Sequential equivalence checking is the key enabler of these trans-
formations. It assures that the two designs before and after a series
of transformations are functionally equivalent across clock cycles.
Traditional sequential equivalence checking algorithms require that
the two designs are cycle-accurate and have a static one-to-one
latch mapping. However, these assumptions are no longer valid after
radical sequential transformations. On the other hand, non-cycle-
accurate sequential equivalence checking algorithms [2], [3] can
tolerate timing differences between the two designs. Nevertheless,
they encounter scalability issues on large industrial designs because
their search space is a product of the state space of the two designs
and the space of all possible alignment patterns.

A refinement relation captures the state equivalence between two
functionally equivalent designs. It has wide applications in various
stages of electronic design automation. For instance, regression verifi-
cation leverages refinement relations to determine whether a sequence
of successively modified designs are functionally equivalent [4], [5].
Behavioral model synthesis takes a refinement relation to generate a
system-level reference model using program synthesis techniques [6],
[7]. Refinement relation is also crucial for formal-guided design
space exploration and root cause analysis [8]. Notably, the emerging
Instruction-level Abstraction (ILA) framework relies on refinement
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relations for various tasks, including property checking and assertion
synthesis [9], [10]. Manually constructing a refinement relation
requires both domain knowledge and expertise in formal methods.
It is notoriously difficult for humans to write a correct refinement
relation for complex designs after significant transformations [6], [9].

This paper presents RE3, an efficient symbolic model checking
algorithm for non-cycle-accurate sequential equivalence checking.
RE3 employs an orchestration of techniques to automatically extract
a concise and human-comprehensible refinement relation from two
equivalent hardware designs. Specifically, it i) reduces the problem
complexity by dividing the equivalence checking problem into two
tasks: synthesizing a scheduling function and finding a corresponding
inductive invariant; ii) steers the searching process towards a simple
refinement relation by controlling the granularity of the scheduling
function; iii) captures the dynamic latch mapping between two hard-
ware designs by constructing a dedicated relational mapping abstrac-
tion domain; iv) filters out bad states with a lightweight simulation-
based self-alignment mechanism; and v) ensures the incrementality
of the model checking process and maintains the compatibility with
state-of-the-art model checking algorithms. With all those techniques,
RE3 addresses the challenges in non-cycle-accurate sequential equiv-
alence checking and generates high-quality refinement relations to
facilitate various downstream tasks.

This paper makes the following key contributions:
• It proposes a rigorous and efficient non-cycle-accurate sequential
equivalence checking algorithm;
• It develops a novel abstraction scheme dedicated to hardware
equivalence checking;
• It presents the first approach to automatically synthesize a concise
and human-comprehensible refinement relation for hardware designs;
• It demonstrates the roles and potentials of refinement relations in
conventional and AI-based VLSI design and verification flows.

II. PROBLEM DEFINITION AND ANALYSIS

A. Preliminaries

We consider standard first-order logic. A term is a variable or a
function symbol. The terms with non-Boolean values are also referred
to as words. A predicate represents a relation over a set of terms and
evaluates to a Boolean value. An atom is either a predicate symbol or
a Boolean variable. A formula is built from atoms with propositional
logic. A literal is either an atom or a negated atom. A clause is a
disjunction of literals, whereas a cube is a conjunction of literals.

A transition system M is defined as a tuple ⟨X, I, T ⟩, where X
denotes the set of state variables, X ′ denotes the corresponding set of
next-state variables, I(X) is a formula representing the initial condi-
tion, and T (X,X ′) is a formula representing the transition relation.
It is a common practice to model input variables as additional state
variables [11]–[13] such that X = Xstate∪Xin. The next-state input
variables X ′

in are either unconstrained or controlled by an external
specification. A state s ∈ S is a full assignment to all state variables.



We say s is a ϕ-state if s satisfies a formula ϕ modulo the underlying
theory. A formula ψ implies another formula ϕ, denoted by ψ ⇒ ϕ,
if all state satisfying ψ also satisfies ϕ. A finite or infinite path of M
is a sequence of states such that the first state is an I-state and all
consecutive steps satisfy T (X,X ′). A path is a ϕ-path if all states
along the path are ϕ-states.
M satisfies a safety property P if all paths of M are P -paths.

A prominent method to prove safety is through finding an inductive
invariant, Inv, such that

(a) I ⇒ Inv, (b) Inv ∧ T ⇒ Inv′, (c) Inv ⇒ P. (1)

We require M to satisfy a progress property: its output value should
eventually change unless it reaches a designated terminal state. This
property can either be enforced by the designer or checked by a
standard tool [14].

B. Non-cycle-accurate Sequential Equivalence

A sequence π stutters at step k if it keeps the same value for indices
k and k+1. For instance, the sequence ⟨a, a, b, c, · · · ⟩ stutters at step
1. We denote the stutter-free sequence of π as ♮π, which is obtained
by removing all stuttering steps from π. Two sequences π1 and π2 are
equivalent modulo stuttering, denoted as π1 ≃ π2, if ♮π1 = ♮π2 [11].
For instance, ♮⟨a, a, b, c⟩ = ⟨a, b, c⟩, and ⟨a, a, b, c⟩ ≃ ⟨a, b, c, c⟩.

A hardware design can be refined across different abstraction levels
or optimized with sequential transformation techniques. A pair of
designs before and after a sequential transformation have the same
functionality if they always exhibit the same observable behavior
modulo timing differences:

Definition 1. MA and MB are observational equivalent if and only
if for every valid input sequence, the corresponding output sequences
are equivalent modulo stuttering.

C. Refinement Relation

The VLSI design flow can be viewed as an iterative refinement
process. Each refinement step modifies the design while it preserves
the original functionality. A refinement relation captures the corre-
spondence between the states of the two designs before and after a
sequential transformation:

Definition 2. R ⊆ SA × SB is a refinement relation for MA and
MB if the following conditions hold:
• I×(sA, sB) ⇒ (sA R sB), (2a)
• (sA R sB) ⇒ (s′A R s′B ∨ s′A R sB ∨ sA R s′B), (2b)
• (sA R sB) ⇒ P×(sA, sB). (2c)

I× represents the initial correspondence of the two designs. As
discussed in §II-A, the input sequence can be encoded into the initial
states of both designs. In this situation, the initial correspondence
requires that the Xin parts are identical and the Xstate parts are
the corresponding reset states. I× can also be specified by the
user. P× denotes the observational equivalence property, defined
as P×(sA, sB) ≜ (sA.out = sB .out), where out represents the
output value of the associated state. If some intermediate states are
considered non-observable, a special value τ can be assigned to their
output values.

The refinement relation in Definition 2 is a bisimulation equiva-
lence relation. It states that a) all pairs satisfying the initial corre-
spondence are related by R; b) for every pair related by R, there
exists a stuttering pattern such that the next pair also satisfies R; c)
for all pairs related by R, the two designs produce the same output.
The existence of a refinement relation implies functional equivalence
of the two designs:

Listing 1 gcdA(x, y)
while (x− y) ̸= 0 do

x← (x−y) > 0 ? (x−y) : x
y ← (y−x) > 0 ? (y−x) : y

output x

Listing 2 gcdB(x, y)
while (x− y) ̸= 0 do

x← (x−y) > 0 ? (x−y) : y
y ← (x−y) > 0 ? y : x

output x

Lemma 3. MA and MB are observational equivalent if there exists
a refinement relation R for MA and MB .

Proof. The existence of a refinement relation ensures that for any
input sequence (2a), there is a way to insert stuttering steps (2b),
such that the two designs produce identical output sequences (2c)
denoted by π. Inserting infinite stuttering steps to either MA or MB

before they terminate, while maintaining R, would contradict with
their progress property. This ensures πA ≃ π and πB ≃ π, and
hence πA ≃ πB .

D. Problem Statement

This paper re-investigates the non-cycle-accurate sequential equiv-
alence checking problem. Our objective is to devise an efficient model
checking algorithm that can solve both equivalent and non-equivalent
instances. Moreover, the algorithm should compute a compact and
human-readable refinement relation for equivalent instances.

E. Running Example

The Euclid’s algorithm computes the greatest common divisor
(gcd) of two natural numbers. It iteratively subtracts the smaller
number from the greater one until the two numbers are equal. gcdA
(Listing 1) and gcdB (Listing 2) are two RTL implementations of
the algorithm. In gcdA, two subtractors are initiated simultaneously
to compute both x − y and y − x. In gcdB , the designer allocates
only one subtractor, so the design needs to switch x and y when x
is less than y.

The two designs have the same functionality but are different
in timing. Suppose the initial values of x and y are 5 and 1,
respectively. Both designs take 4 clock cycles to reach termination.
On the other hand, suppose the initial values are 5 and 3. gcdA
takes 3 cycles ⟨(5, 3), (2, 3), (2, 1), (1, 1)⟩, while gcdB takes 5
cycles ⟨(5, 3), (2, 3), (3, 2), (1, 2), (2, 1), (1, 1)⟩. Notice that the two
designs have a variable period respect to each other depending on the
inputs. Furthermore, there exists no static state mapping or internal
node mapping between the two designs.

A refinement relation can capture the correspondence between
the states of the two designs, and thus prove their equivalence. For
example, R ≜ (xA = xB ∧ yA = yB)∨ (xA = yB ∧ xB = yA) is a
simple refinement relation satisfying all the conditions (2a)-(2c).

III. THE REFINEMENT RELATION SEARCHING ALGORITHM

A. Overview

This section presents RE3, a rigorous and efficient algorithm
to check observational equivalence. Given two hardware designs
MA and MB , it generates a compact and human-comprehensible
refinement relation if they are equivalent, or an input sequence as the
counterexample if they are non-equivalent. The general workflow of
RE3 is shown in Fig. 1.

RE3 first constructs a composed transition system M× from MA

and MB (§III-B). It then leverages a new abstraction paradigm, rela-
tional mapping abstraction, to implicitly build an abstract model for
M× (§III-E). On the same abstract domain, the algorithm synthesizes
a scheduling function that controls the alignment of M× (§III-B).
Afterward, it launches an IC3-style model checking procedure to find
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Fig. 1: The general workflow of the RE3 algorithm.

a glued inductive invariant Inv× (§III-F). If that procedure succeeds,
the inductive invariant contains a relational transition diagram,
which represents the desired refinement relation (§III-D). If that
procedure fails, RE3 launches a simulation on the concrete domain
using the self-alignment mechanism (§III-C) to validate the abstract
counterexample. If that validation passes, the algorithm returns an
input sequence corresponding to the counterexample. Otherwise, it
refines either the scheduling function or the abstract domain to
eliminate the spurious counterexample and repeat the verification
process.

B. Composed Transition System

Self composition [15], [16] is recently developed to verify hyper-
safety properties on software programs. We employ self composition
to divide the sequential equivalence checking problem into two
separate problems: i) inferring a scheduling function fs for M×, and
ii) finding a glued inductive invariant Inv× with respect to fs. For
each glued state s× ∈ S×, where S× ≜ SA × SB , fs controls
which of MA and MB will move forward in the next clock cycle by
selecting a stuttering pattern:

Definition 4. A scheduling function fs : S× → {MA,MB , MA ∪
MB} maps each glued state to a non-empty set of designs that are
to execute in the next clock cycle.

It is usually the case that a high-level specification MA always
runs no slower than its implementation MB , as the former typically
has fewer resource constraints. In this situation, we let fs output
a Boolean value: true represents a synchronizing transition where
both MA and MB move forward, and false represents a stuttering
transition where only MB moves forward. Synthesizing fs thus
becomes a binary classification problem in the glued state space.

A composed transition system M× is a parallel composition of
MA and MB . It executes deterministically when augmented with fs:

Definition 5. Given two designs MA, MB and a scheduling
function fs, the composed transition system M×(fs) is a tuple
⟨XA ∪XB , I×, T×⟩, where I× is the initial correspondence (§II-C),
and
T×(sA, sB , s

′
A, s

′
B) ≜

∧ if MA ∈ fs(sA, sB) then TA(sA, s
′
A) else s

′
A = sA

∧ if MB ∈ fs(sA, sB) then TB(sB , s
′
B) else s

′
B = sB .

In Definition 5, the output of fs at a certain glued state controls
whether to stall a branch of M×. With M×(fs), the problem of
finding a refinement relation can be reduced to an ordinary safety
checking problem:

Lemma 6. There exists a refinement relation R for MA and MB , if
there exists a scheduling function fs and a glued inductive invariant
Inv× for M×(fs), such that the following conditions hold:
• I× ⇒ Inv×, (6a)
• Inv× ∧ T× ⇒ Inv′×, (6b)
• Inv× ⇒ P×. (6c)

Proof. Let R equal Inv×, i.e., for each s× within Inv×, the
corresponding sA and sB are related by R. Conditions (2a) and
(2c) can be immediately derived from (6a) and (6c). Meanwhile,

fs explicitly selects a stuttering pattern for each s× to form T×.
Therefore, (2b) can also be derived from (6b).

Lemma 6 suggests a method to convert the non-cycle-accurate
equivalence checking problem to a safety checking problem.
In §III-F, we present a comprehensive model checking algorithm to
find both fs and Inv× for hardware designs.

C. Self-alignment Mechanism

A glued inductive invariant should not contain any bad states
that will inevitably reach a ¬P×-state. With the self-alignment
mechanism, we can quickly determine whether a concrete glued state
s× is a bad state. In comparison, property directed self composition
(PDSC) [15], [16] needs to account for all stuttering patterns.
Specifically, it constructs a tree whose root is s× and whose edges
are the valid stuttering patterns. Then it traverses the tree in a reverse
topological order. A state is labeled as a bad state if it is a ¬P×-state
or if all of its successors are bad states.

The self-alignment mechanism considers a single stuttering pattern
for each glued state. Specifically, if the output value of one design
changes and that of the other design remains the same, the mechanism
stalls the first design while it executes the second design in the next
clock cycle. Otherwise, it executes both designs simultaneously in the
next clock cycle. Kairos [2] uses a similar strategy to verify hardware
modules, but it assumes that handshake signals are always available.

Theorem 7 describes the relationships among observational equiv-
alence, scheduling function, glued inductive invariant, and the self-
alignment mechanism. We omit the proof due to space limit.

Theorem 7. The following statements are always equivalent:
• MA and MB are observational equivalent; (7a)
• A refinement relation R exists for MA and MB; (7b)
• There exists a scheduling function fs and a corresponding glued
inductive invariant Inv× for M×; (7c)
• There exists a scheduling function fs such that all paths of M×(fs)
are observational equivalent paths; (7d)
• All paths produced by the self-alignment mechanism on M× are
observational equivalent paths. (7e)

Lemma 8. A glued state s× is a bad state if and only if the two
output sequences produced by the self-alignment mechanism starting
from s× are different.

Lemma 8 can be proved by treating s× as I× and using the same
reasoning as the (7a) ⇒ (7e) proof in Theorem 7. It suggests that
we can check whether s× is bad by running a simulation with the
self-alignment mechanism from s×.

Based on Theorem 7, a viable approach to verify observational
equivalence is to launch model checking on the composed transition
system augmented by the self-alignment mechanism. However, the
main challenge lies in the “quality” of the scheduling function. Some
scheduling functions admit easier-to-find inductive invariants, which
can lead to more concise refinement relations. RE3 simultaneously
synthesizes the scheduling function and finds the corresponding in-
ductive invariant to accelerate convergence and maximize the chance
of finding a simple inductive invariant.



D. Relational Transition Diagram

Abstraction techniques can reduce the complexity of the model
checking problem while preserving the facts relevant to the problem.
Consider an abstraction function α : S× → Ŝ× that maps concrete
glued states into abstract ones. There is an abstract transition between
two abstract states ŝ1 and ŝ2 if there is a concrete transition between
any pair of concrete states s1 and s2, such that α(s1) = ŝ1 and
α(s2) = ŝ2. Suppose we have found a glued inductive invariant
Înv× on an abstract domain. Then we can construct a relational
transition diagram as follows:

Definition 9. A relational transition diagram is a directed graph
whose vertices are all the abstract glued states within Înv× and
whose edges are the abstract transitions between these states.

∧ xB < yB
∧ xA = yB
∧ yA = xB

∧ xB < yB
∧ xA = xB
∧ yA = yB

stu

∧ xB > yB
∧ xA = yB
∧ yA = xB

∧ xB = yB
∧ xA = xB
∧ yA = yB

∧ xB > yB
∧ xA = xB
∧ yA = yB

Fig. 2: A relational transition diagram for gcdA and gcdB when
fs := xB ≥ yB ? true : false. Solid (resp. dashed) arrows represent
synchronizing (resp. stuttering) transitions. An input arrow indicates an
initial state and a double circle indicates a terminal state.

As an illustrative example, Fig. 2 shows a relational transition
diagram for gcdA and gcdB . Recall that gcdA is always no slower
than gcdB . We choose a scheduling function that executes both
designs when xB ≥ yB and executes only gcdB otherwise. This
scheduling function leads to a simple diagram that consists of only
five abstract states.

Because a relational transition diagram is constructed from a glued
inductive invariant and a valid scheduling function, it induces a
transition relation R (Lemma 6). Two states sA ∈ SA and sB ∈ SB

are related by R if they are glued together, i.e., α((sA, sB)) is in
the diagram. In the gcd example, sA = (5, 3) and sB = (5, 3) are
glued together by the top-left state in Fig. 2.

In the rest of this section, we will discuss how to construct an
abstract domain that allows a compact relational transition diagram,
and how to efficiently search for a glued inductive invariant.

E. Relational Mapping Abstraction

Predicate abstraction [17] and syntax-guided abstraction [13] are
two prevalent abstraction schemes for hardware verification. Predicate
abstraction introduces a set of predicates over the state variables. A
predicate-abstracted state represents all those concrete states with the
same valuation to the predicates. Syntax-guided abstraction utilizes
the terms in the syntax of the design to encode the state space.
A syntax-abstracted state is a partition assignment that captures all
equality and inequality among the terms. For the gcdA example, the
concrete state (2, 4) can be mapped to the abstract state (¬(x−y) >
0) ∧ ((y − x) > 0) ∧ {x, y − x | y | x− y}, where vertical bars
divide terms and formulas into equivalent classes.

During our experiments on hardware equivalence checking, we
make several key observations on abstraction schemes. First, MA

and MB operate on two disjoint sets of state variables. Therefore,
we introduce two separate sets of predicates over the corresponding
sets of state variables. This can simplify the generation of new
predicates and thus reduce the search space of a model checking

algorithm. Second, we notice that latches* are the first-class citizens
in an equivalence checking problem. A conditional latch mapping
almost always exists for a pair of equivalent designs [9]. Hence, an
abstraction scheme can benefit from explicitly capturing the one-to-
one correspondence between a subset of latches from both designs.
Third, we notice that the equivalence of latches is more important
than the non-equivalence of latches. Thus, we only add constraints
for the pairs of equivalent of latches. Compared with syntax-guided
abstraction, this approach can usually significantly reduce the number
of abstract states.

In light of these observations, we propose a novel abstraction
scheme, relational mapping abstraction (RMA), that is dedicated
to hardware equivalence checking. An RMA abstracted state is
represented by an r-cube consisting of three fields: r-cube ≜ predA∧
predB ∧ mapping. Each field is either empty or a conjunction
of atomic predicates. The state variables of MA can appear only
in predA and the left-hand side of mapping, whereas the state
variables of MB can appear only in predB and the right-hand side
of mapping. Intuitively, the mapping field explicitly expresses the
latch mapping, while predA and predB specify the conditions for
that mapping.

A glued inductive invariant Înv× on an RMA abstract domain is
represented as a disjunction of r-cubes. Such an inductive invariant
naturally gives rise to a relational transition diagram (§III-D). For
instance, every node in Fig. 2 is represented by an r-cube. The
disjunction of all those r-cubes comprises an inductive invariant of
the the composed transition system M×(fs).

F. Finding Refinement Relation with RE3

Algorithm 1 The RE3 algorithm.

• Input: high-level design MA, low-level design MB , initial corre-
spondence I×.

• Output: a relational transition diagram D× that represents the
refinement relation if MA and MB are observational equivalent; a
concrete witness of non-equivalence s∗× ∈ I× otherwise.

1: Construct M× from MA and MB ▷ §III-B
2: Initialize α with initial predicates ▷ abstract function, §III-E
3: while true do
4: Fs ← ⊤ ▷ reset constraints on scheduling function, §III-B
5: while true do
6: (reachable, Inv×, cex) ← isReachable(M×(Fs), α)
7: if reachable = false then ▷ found inductive invariant
8: D× ← buildDiagram(Inv×, Fs, α) ▷ §III-D
9: return D×

10: else ▷ found abstract counterexample trace
11: (spurious, s∗×) ← isSpurious(cex)
12: if spurious = false then return s∗× ▷ witness
13: else
14: Fs ← addConstraints(Fs, cex, α)
15: if Fs is invalid then break
16: α ← refine(α)

The RE3 Algorithm. A high-level description of RE3 is given in
Algorithm 1. Leveraging the implicit abstraction technique [17], RE3
exploits relational mapping abstraction throughout its execution, and
we omit hat symbols in the pseudocode to improve readability. The
algorithm starts by constructing a composed transition system M×
from the two designs (Line 1). If the user has extracted a set of control
statements from the designs, RE3 can initialize the abstract domain

*In this context, “latches” can refer to any memory elements at either bit-
level or word-level.



with those statements (Line 2). The algorithm initiates a nested loop
to find a compact refinement relation. In every iteration of the outer
loop, RE3 incrementally refines a non-deterministic set of scheduling
functions Fs, which is initially unconstrained. In every iteration of
the inner loop, RE3 calls an IC3-style [18], [19] model checking
procedure on M× augmented by Fs (Line 6). If ¬P× is unreachable
from I× on the current abstract domain, a glued inductive invariant
Inv× is returned by the model checking procedure. In this case,
RE3 builds a relational transition diagram (Line 8) that represents
the refinement relation and provides it to the user. Otherwise, an
abstract counterexample trace is returned by the model checking
procedure. RE3 validates the counterexample with the self-alignment
mechanism (Line 11). If the validation passes, a concrete glued state
s∗× ∈ I× is extracted as a witness to prove that MA and MB are not
observational equivalent (Line 12). If the counterexample turns out
to be spurious, RE3 strengthens the constraints on Fs to eliminate
the counterexample and continues to the next iteration (Line 14).
However, if Fs is no longer valid after adding the new constraints
(Line 15), RE3 exits to the outer loop and refines the abstract domain
(Line 16). It resets the constraints on Fs before it enters the inner
loop again (Line 4).

In the following, we highlight several key components and features
of the RE3 algorithm.
• RE3 reverses the sequence of frames so that the relational mapping
abstraction scheme can be compatible with the IC3 framework.
Recall that the RMA scheme represents a glued inductive invariant
as a disjunction of r-cubes. On the other hand, a frame in the IC3
framework is a conjunction of clauses. RE3 takes the negation of the
former during model checking to ensure compatibility. Accordingly,
RE3 reverses the order of the frames, such that F0 = ¬P× and
Fi ⇒ ¬I×.
• RE3 navigates the searching process towards finding a concise
refinement relation. It always starts from an unconstrained set of
scheduling functions and gradually refines the set with spurious
counterexamples. By controlling the granularity, the algorithm is
more likely to find a general and compact inductive invariant. Besides,
RE3 prioritizes the refinement of scheduling functions over the
refinement of the abstract domain. The latter is executed only when
necessary, i.e., all the remaining scheduling functions are invalid. We
adopt this strategy because the latter dominates the complexity of
model checking and the refinement relation, while the former can be
restored periodically.
• RE3 utilizes a lightweight simulation-based approach to find bad
states and thus accelerate convergence. Whenever a counterexample
trace is returned by the isReachable procedure, or a proof obligation
is added to the priority queue, RE3 randomly samples N concrete
glued states within the targeted abstract state. RE3 runs a simulation
on the concrete domain with the self-alignment mechanism (§III-C)
from each of those states. All resulting bad states are permanently
recorded and utilized by all subsequent invocations of the isReachable
procedure. Because this approach is speculative, missing a bad state
during sampling does not affect the soundness of RE3.
• RE3 ensures that the model checking procedures in every iteration
of the outer loop are fully incremental. Each time an abstract
counterexample trace is returned by the isReachable procedure, RE3
analyses the trace and adds new scheduling constraints to Fs. During
this process, the transition relation of M×(Fs), denoted as T×, is
monotonically strengthened. This ensures that the whole sequence of
frames can be reused in the next execution. Furthermore, RE3 labels
a glued abstract state as a temporary bad state if every one of its
successors is a temporary bad state or contains a concrete bad state.

Once an I×-state is contained in a temporary bad state, Fs becomes
invalid, i.e., it is impossible to find an Inv× for any of the remaining
scheduling functions within Fs. In that case, RE3 resets Fs, removes
all temporary bad states, and calls the refine procedure.
• RE3 employs an efficient strategy to eliminate the counterexample
tree and thus refine the abstract domain. Briefly speaking, it walks
along a single path from the root until it finds a suitable abstract state
to split. For predA and predB , it leverages interpolation to generate
new predicates to split the targeted state. For the mapping field, it
collects a set of potentially equivalent latch pairs by simulating the
two designs, utilizes unsat core extraction to find a minimal set of
those pairs, and adds them to mapping. Finally, RE3 chooses the
simplest one among the three fields to settle down the refinement.

Correctness and Termination. We rely on the correctness of the
original IC3 algorithm to establish the correctness of the RE3 algo-
rithm. When RE3 returns a refinement relation, it must have found
a valid scheduling function and an associated inductive invariant.
According to Theorem 7, MA and MB must be observational
equivalent. On the other hand, the two designs must be non-equivalent
when RE3 returns a concrete witness of non-equivalence that satisfies
the initial correspondence. This is guaranteed by the correctness of
the self-alignment mechanism.

No complexity bounds exist for model checking algorithms if the
composed transition system is in the infinite state space. Nevertheless,
if all variables of the two designs are constant-sized bit vectors, RE3
will eventually terminate. This is because the abstraction refinement
process is strictly monotonic, while the scheduling function pruning
process and the IC3 converging process are also strictly monotonic
on a fixed abstract domain.

IV. EVALUATION

A. Experimental Results

We implemented RE3 in Python on top of the Boolector SMT
solver [20]. We selected 7 high-level hardware specifications from the
HLSynth benchmark suite [21]. The same set of specifications is used
in the SE3 paper [3]. We leveraged a high-level synthesis tool, Xilinx
Vivado HLS, to generate 6 RTL designs with different timing for
each specification. Thus, we obtained 105 pairs of equivalent designs
for all those specifications. Moreover, we manually introduced errors
into the designs to create 105 pairs of non-equivalent designs. All
experiments are conducted on a Linux machine with a 3.2GHz
processor. Each instance is executed on a single thread with a 4GiB
of memory limit and a 7,200-second timeout.

10 1 100 101 102 103
0

20

40

60

80

100
Equivalent Cases

10 1 100 101 102 103
0

20

40

60

80

100
Non-equivalent Cases

RE3 SE3 Kairos

Fig. 3: Comparing the number of solved instances over time (s).

Figure 3 compares RE3 against two existing non-cycle-accurate
sequential equivalence checking algorithms, SE3 and Kairos [2], for
their efficiency. On the equivalent benchmarks, RE3 and SE3 are



significantly faster than Kairos. RE3 is slightly slower than SE3 on
these benchmarks. We believe this is because SE3 adopts a monolithic
strategy that solves the scheduling function, the inductive invariant,
and the reachability information at the same time. In comparison, RE3
discards some of the previous results when it starts a new iteration
of the outer loop. However, such an overhead is justified by the fact
that RE3 can find a refinement relation in addition to the verification
result. On the non-equivalent benchmarks, both RE3 and Kairos are
faster than SE3. It is because RE3 employs the simulation-based self-
alignment mechanism, and Kairos always concentrates on a fixed
alignment pattern throughout the model checking process.

We measured the size of an inductive invariant by counting the
number of cubes (§II-A) within its logic formula. We collected all
pairs of equivalent designs that can be solved by both RE3 and SE3.
In Figure 4, each cross mark represents such a pair of designs. As
plotted in the figure, the inductive invariants produced by RE3 are
almost always more concise than those produced by SE3. The average
size of the former is 10.3 cubes, whereas the average size of the latter
is 33.1 cubes. In this regard, RE3 achieves a 69% reduction in size
on average.

0 30 60 90 120 150
# SE3 Cubes

0

30

60

90

120

150

# 
RE

3 
Cu

be
s

Fig. 4: Comparing the size of inductive invariants: RE3 vs. SE3.

B. Case Study

The following study showcases how a concise and explainable
refinement relation can benefit IC design and verification. Recently,
an abundant literature focuses on leveraging large language models
(LLMs) for RTL code generation [22]–[25]. They rely on user
feedback and prompt engineering to iteratively refine a design and
improve its quality. Nevertheless, LLMs have an Achilles heel:
their tendency to hallucinate. They can generate designs that seem
plausible but contain subtle functional errors [24]. It is notoriously
difficult to detect and fix such errors.

Existing work relies on simulation to determine the correctness of
the generated design [22]–[25]. However, an error trace produced by a
simulator does not reveal the root cause of the error. According to our
experiments with GPT-4o [26], an LLM can be trapped in repeated
interactions with a simulator because it is incapable of interpreting
and reasoning about the error traces.

We propose a comprehensive method to detect and fix errors in
LLM-generated designs. Starting from a reference design D0, it
incrementally applies a sequence of transformations with LLM to
optimize the performance and incorporate new features. Suppose it
has verified the correctness of Di, the i-th version of the design,
and obtained Ri, the refinement relation between D0 and Di. Given
a new version Di+1, our method traverses the relational transition
diagram associated with Ri to check whether Di+1 violates any of the
transitions in the diagram. Upon detecting a violation, the transition,
its start state, and its end state are encapsulated in a prompt for the
LLM to fix that error. When Di+1 is proved correct, the method
computes a new refinement relation Ri+1 and proceeds to the next
iteration.

x← x≪ 1

y ← y ≫ 1

z ← y[0] ? z + x : z

(a) multiA

x← y[1] ? x≪ 1 : x≪ 2
y ← y[1] ? y ≫ 1 : y ≫ 2

z ← y[0] ? z + x : z

(b) multiB

if y[3:1] = 000 then
x← x≪ 4; y ← y ≫ 4

else if y[2:1] = 00 then
x← x≪ 3; y ← y ≫ 3

else if y[1] = 0 then
x← x≪ 2; y ← y ≫ 2

else x← x≪ 1; y ← y ≫ 1

z ← y[0] ? z + x : z

(c) multiC (expected)

if y[3:0] = 0001 then
x← x≪ 1; y ← y ≫ 1

else if y[3:0] = 0010 then
x← x≪ 2; y ← y ≫ 2

else if y[3:0] = 0100 then
x← x≪ 3; y ← y ≫ 3

else if y[3:0] = 1000 then
x← x≪ 4; y ← y ≫ 4

else x← x≪ 1; y ← y ≫ 1

z ← y[0] ? z + x : z

(d) multiD (incorrect)

Fig. 5: Loop bodies of 4 implementations of multi 16bit benchmark.

∧ xA = xB
∧ yA = yB
∧ zA = zB

∧ ¬yA[0]
∧ x'A = xB
∧ y'A = yB
∧ zA = zB

yB[1]
¬yB[1]

Fig. 6: A relational transition diagram for multiA and multiB . x′
A and

y′A denote the next states of xA and yA, respectively.

We use multi 16bit from the RTLLM benchmark suite [23]
to illustrate the above-mentioned method. Fig. 5(a) displays the
simplified loop body of the reference design given by RTLLM. In
every clock cycle, the multiplicand x is shifted to the left by 1 bit.
If the last bit of the multiplier y is 1, the product z accumulates the
shifted value of x. In practice, one can use a high-level specification, a
certified initial implementation, or a transactional-level model (TLM)
as the reference design. Suppose the designer decides to improve the
performance of the design by looking into the next 2 bits instead
of 1. Specifically, both x and y will be shifted twice if y[1] is 0.
Fig. 5(b) displays the pseudocode of the loop body generated by
GPT-4o. Notice that this transformation is non-cycle-accurate since
the timing of multiB is dependent on input values. We run RE3 on
multiA and multiB , yielding a concise refinement relation RB . The
corresponding relational transition diagram is shown in Fig. 6.

Suppose the designer wants to improve the performance further by
looking into the next 4 bits. The two operands will be shifted multiple
times if there is a consecutive sequence of zeros in y. Fig. 5(c)
displays a correct implementation. Nevertheless, the implementation
generated by GPT-4o (Fig. 5(d)) is incorrect and cannot pass the
testbench provided by RTLLM. We attempted to prompt the LLM
with the error traces, but it could not identify the root cause from
this information. Hence, we traverse the relational transition diagram
of RB to check whether multiD violates any of those transitions. As
shown in Fig. 6, the transition marked in red is violated. In a nutshell,
multiD overlooked that the shifting behavior should not depend on
the value of y[0]. We prompted GPT-4o with the transition and the
associated states, which enabled the LLM to detect and fix the error.

V. CONCLUSION

In this paper, we present a new method for non-cycle-accurate
sequential equivalence checking. This method can automatically
synthesize a refinement relation during its execution. We illustrate
potential applications of the refinement relation in the IC design and
verification flow. We plan to explore additional use cases and integrate
the refinement relation into EDA tools in the future.
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