
DE2: SAT-based Sequential Logic Decryption
with a Functional Description

You Li∗, Guannan Zhao∗, Yunqi He, and Hai Zhou
Northwestern University, Evanston, USA

{you.li, gnzhao, yunqi.he}@u.northwestern.edu, haizhou@northwestern.edu

Abstract—Logic locking is a promising approach to protect the intel-
lectual properties of integrated circuits. Existing logic locking schemes
assume that an adversary must possess a cycle-accurate oracle circuit
to launch an I/O attack. This paper presents DE2, a novel and rigorous
attacking algorithm based on a new adversarial model. DE2 only takes a
high-level functional specification of the victim chip. Such specifications
are increasingly prevalent in the modern IC design flow. DE2 closes the
timing gap between the specification and the circuit with an automatic
alignment mechanism, which enables effective logic decryption without
cycle-accurate information. An essential enabler of DE2 is a synthesis-
based sequential logic decryption algorithm called LIM, which introduces
only a minimal overhead in every iteration. Experiments show that DE2
can efficiently attack logic-locked benchmarks without access to a cycle-
accurate oracle circuit. Besides, LIM can solve 20% more ISCAS’89
benchmarks than state-of-the-art sequential logic decryption algorithms.

I. INTRODUCTION

Logic locking [1] is a prominent approach that can protect the
intellectual properties and enhance the security of hardware designs.
Figure 1 depicts the general IC design flow with logic locking.
The design house introduces key-controlled protection logic into the
circuit during logic or physical design. Once the fabricated chip is
returned to the design house, they are activated by applying the pre-
selected key. Without knowing a correct key, an adversary cannot
fully recover the original functionalities of the chip.

Logic decryption aims to reveal a correct key with structural or
behavioral analysis. Since proposed in 2015, the SAT attack [2]
has established the status quo of logic decryption. It provides solid
guarantees on both termination and correctness of the returned key.
Although there exist defense mechanisms to thwart this attack [3], [4],
they face a trilemma among SAT resilience, structural robustness, and
locking efficiency [5]. Therefore, the SAT attack remains a prominent
approach to logic decryption.

To launch the SAT attack, an adversary needs to obtain i) the
logic-locked netlist and ii) a working chip as the oracle circuit. The
same requirement applies to all oracle-guided attacks. In reality, an
adversary can acquire the logic-locked netlist through a rogue insider
within the design house or recover it from a physical layout obtained
from a foundry or assembly facility [6]. On the other hand, acquiring
a working chip can be challenging in many scenarios. For example,
a) a chip may be designed for mission-critical applications or is fully
customized, so a working chip cannot be purchased from the open
market; b) it may be too late to start reverse engineering after a
chip is on the market, as the market opportunity may have already
expired; and c) a corresponding working chip may not be available
if the adversary targets IP blocks or sub-modules.

Consequently, researchers have devised various oracle-less attacks
on logic locking, including synthesis-based attacks [7], [8], testing-
based attacks [8], [9], machine-learning-based attacks [10], [11] and
structural attacks [12], [13]. These attacks do not require to access a

∗
Equal contribution.
†

This work is partially supported by the National Science Foundation under
grants 2113704 and 2148177.

TABLE I: Comparing the adversarial models of different logic decryption
methods. A filled (resp. unfilled) circle indicates a resource required (resp.
not required) by the adversary.

Method Logic-locked Working Functional Formal
Netlist Chip Description Guarantee

Oracle-guided Attacks
� � � ✓[2], [17], [18], [20], [21]

Oracle-less Attacks
� � � ✗[7]–[13]

The DE2 Attack
� � � ✓(Proposed Method)

working chip. However, these methods are either limited to specific
use cases and locking schemes, or cannot guarantee termination and
correctness. Is there a logic decryption method as powerful as the
SAT attack when a working chip is unavailable?

With the rapid growth of system-on-chip, heterogeneous archi-
tecture, and AI accelerator, system-level modeling is increasingly
popular in the IC design flow. The system-level model constitutes i)
an executable specification for the design team to drive the entire RTL
development, ii) a golden reference model for the verification team
to ensure that the RTL design conforms to the specification, and iii)
a functional representation of the hardware that allows the software
development team to reduce time to market. Unlike the locking key
of the chip, the system-level model is distributed among multiple
parties inside and outside the design house. Meanwhile, EDA vendors
have released virtual prototyping tools such as Synopsys Virtualizer
and Cadence Helium to support high-level functional specifications.
Leading IP vendors, including Synopsys, ARM, and the RISC-V
community, are offering compatible transaction-level models (TLMs)
for their products [14]. Many of these models are made publicly
accessible to attract customers. Furthermore, the instruction-level
abstraction (ILA) modeling platform [15] has recently been proposed
to facilitate the verification of processors and accelerators. An open-
source database, ILDB [16], contains a wide variety of ILA models.

The main obstacle to adopt a high-level specification as the
oracle is the timing problem. Existing sequential SAT attacks [17],
[18] require the oracle to be cycle-accurate to the logic-locked
netlist. However, the high-level models are typically loosely timed,
approximately timed, or even untimed, versus their RTL implemen-
tations [19]. Additionally, the efficiency and scalability of sequential
SAT attacks are questionable under these complex timing situations.

This paper presents DE2, a novel and rigorous sequential logic
decryption method based on formal methods. Table I compares
DE2 with existing logic decryption methods. DE2 takes a functional
description instead of an oracle circuit to launch a sequential logic
decryption. The functional description may contain limited or no
timing information and may specify only the external I/O behaviors
rather than the internal implementation details. DE2 first converts the
functional specification to a netlist utilizing off-the-shelf high-level
and logic synthesis tools. A clock cycle alignment between the logic-
locked and the synthesized netlists is then automatically generated on
the fly according to the I/O behaviors. Finally, it applies SAT-based

Behavioral
Specification RTL

High-level
Synthesis

Design &
Integration

Netlist

Logic
Design Layout

Physical
Design

Wafer
Fabrication

Chip w/o key

Testing &
Packaging

Chip w/ key

Key
Embedding

Public Domain Design House Foundry Assembly Facility Design House

Fig. 1: IC design flow with logic locking.

constraint solving to extract a correct key from the model.
A crucial enabler of DE2 is a simple and flexible parameter syn-

thesis attack against logic locking. Instead of duplicating the whole
unrolled netlist, the parameter synthesis attack distills a cube (§II-A)
of wrong keys from each I/O constraint. This attack can scale to large
and hard benchmarks that demand deep unrolling, as it significantly
reduces memory consumption and improves computational efficiency.

Our main contributions are:
• We discover that logic locking remains vulnerable to I/O attacks
even when the adversary cannot obtain a working chip, challenging
the common assumption in existing logic locking schemes;
•We propose LIM, a flexible and efficient sequential logic decryption
algorithm outperforming state-of-the-art techniques;
• We devise DE2, an innovative SAT-based attack that can auto-
matically align two non-cycle-accurate designs on the fly, enabling
effective logic decryption without the need for a cycle-accurate
oracle;
• We conduct extensive experiments to demonstrate the effectiveness
and scalability of LIM and DE2 on a wide range of benchmark
circuits.

II. BACKGROUND

A. Preliminaries

A combinational logic-locked netlist Ce is defined as a tuple
⟨X,K,Y⟩, where X represents the primary inputs, K the key inputs,
and Y the primary outputs. We use Co to denote the oracle circuit
corresponding to Ce. If a correct key Kc is inserted, Ce(Kc) and Co

should exhibit the same behavior given any input sequence.
A variable or its negation is called a literal. A conjunction of

literals is called a cube, and a disjunction of literals is called a clause.
A clause is the negation of a cube and vise versa. A pattern is an
assignment to all corresponding variables and it can be described as
a cube. A sequence is a series of patterns. A Boolean formula is
in conjunctive normal form (CNF) if it is a conjunction of clauses.
A formula F implies another formula G, written as F ⇒ G, if all
assignments satisfying F also satisfy G. I is an implicant of a formula
F if I is a cube and I ⇒ F. Ip is a prime implicant if it is minimal,
i.e., dropping any literals from Ip will result in a non-implicant.

A sequence σ stutters at step k if it keeps the same value for
indices k and k+ 1. For instance, the sequence ⟨a, b, c, c, · · · ⟩ stutters
at step 3. Two sequences are equivalent modulo stuttering if they
become identical after all stuttering steps are eliminated.

B. Problem Definition

Our attack requires that the functional specification and the original
design of the circuit have the same externally visible behaviors
modulo timing differences [22]:

Definition 1 (Observational equivalence). Two circuits are observa-
tionally equivalent if and only if their output sequences are equivalent
modulo stuttering for every input sequence.

Figure 2 shows a functional specification of Euclid’s algorithm in
a high-level language and the corresponding RTL implementation.
For conciseness, we omitted key-related components in the RTL
implementation. Because only one subtractor is allocated in the

while (x-y != 0)
{
x = (x-y)>0 ? (x-y) : x;
y = (y-x)>0 ? (y-x) : y;
}
out = x;
return;

(a) gcdspec

always @(posedge clk) begin
if (x-y != 0)
x <= (x-y)>0 ? (x-y) : y
y <= (x-y)>0 ? y : x
else
out <= x

end

(b) gcdimpl

Fig. 2: (a) The high-level specification and (b) the hardware implemen-
tation of Euclid’s algorithm.

implementation, the two models are different in timing and have
variable latencies with respect to each other. The adversary’s goal
is to infer a correct key for the logic-locked netlist:

Problem 1 (Non-cycle-accurate sequential logic decryption). Given
a logic-locked netlist Ce and a corresponding reference model C f ,
find a correct key Kc such that Ce(Kc) and C f are observationally
equivalent.

C. SAT Interface

We use S AT [ψ] to denote a SAT query to formula ψ. It returns
satisfiable if there exists an assignment to all variables in ψ such
that ψ evaluates to true, and unsatisfiable otherwise. Furthermore,
we use S AT [ψ].model(X) to denote the value of variable X within a
satisfiable assignment.

Many modern SAT solvers support unsat core extraction. We write
an unsat core query as S AT [ψ, γ], where ψ is a CNF formula and γ

is a set of assumption clauses. If ψ∧ γ is satisfiable, both S AT [ψ, γ]
and the standard SAT query S AT [ψ ∧ γ] will return a satisfiable
assignment. However, if ψ∧ γ is unsatisfiable, S AT [ψ, γ] will return
an unsat core β in addition to the unsatisfiable result. β is a subset of
γ such that ψ∧ β is still unsatisfiable. Some SAT solvers can ensure
that β is minimal in most cases [23].

D. SAT Attack Algorithms

The combinational SAT attack algorithm [2] takes an logic-locked
netlist Ce and a corresponding oracle circuit Co as inputs. In each
iteration, it queries an SAT solver for a differentiating input pattern
(DIP) Xd: with such an input pattern, there exist two different key
patterns K1 and K2 within the current model that produce two
different output patterns Y1 and Y2. The algorithm then queries the
oracle for the corresponding correct output Yd. Xd and Yd, together
with a fresh copy of the logic-locked netlist, form a new I/O
constraint on incorrect key patterns. The algorithm terminates when
no more DIPs can be found. A correct key Kc can then be extracted
from the model through another SAT query.

The combinational SAT attack can be thwarted if the scan-chain
access to the flip-flops is disabled [24]. Besides, researchers have
developed sequential logic locking schemes [25], [26]. They can be
unlocked with an unlocking input sequence that guides the circuit
from the reset state to the real protected initial state. Sequential
logic decryption algorithms [18], [20] apply the combinational SAT
attack on the unrolled netlist to alleviate these challenges. It treats
the protected initial state as the key when attacking sequential
logic locking schemes. The unrolling diameter k is increased in
each iteration until one of the following termination conditions is

RTL

C++/SystemC
High-level

Specification/TLM

Public Domain
Algorithm/

Datasheet/UML

High-level
Synthesis

Design &
Integration

Behavioral Specification

Synthesized
Netlist Cb

Logic
Synthesis

Design House/
Foundry/

Assembly Facility

SoC/IP Module/
Chip w/o key

Encrypted
Netlist Ce

Product
Machine M×Automatic

AlignmentMalicious
Insider

Reverse
Engineering

Encrypted Hardware

Sequential
DE2 Attack

White-box
Attack

Fig. 3: The general workflow of DE2.

satisfied. i) Unique Key: only one key is remaining; ii) Combinational
Equivalence: all the remaining keys are within the same equivalent
class when the flip-flops are treated as primary inputs and outputs;
iii) Unbounded Model Checking: an unbounded model checker cannot
find a new differentiating input sequence.

III. THE DE2 ATTACKING ALGORITHM

Figure 3 shows the general workflow of DE2. As mentioned
in §I, DE2 assumes that the adversary cannot acquire an oracle
circuit. Instead, the adversary is able to obtain a minimum functional
specification of the victim circuit. This specification is automatically
synthesized to an RTL design with a high-level synthesis tool (e.g.,
Vivado HLS and Cadence Stratus). Afterwards, the RTL design is
mapped to logic gates with a logic synthesis tool. In the remainder of
this paper, we refer to the synthesized netlist as C f and the expected
behavior of the victim circuit as Ce(Kc).

The functional specification may be untimed or have only limited
timing information because it lacks internal implementation details.
Additionally, the synthesis process can introduce uncertainties in
timing. As a result, C f and Ce(Kc) are likely to be non-cycle-accurate.
Furthermore, C f could have a varying period with respect to Ce(Kc),
since a high-level synthesis tool can create a control logic that is
fundamentally different from the one within Ce.

The DE2 algorithm (§III-C) brings up two main components
to tackle the timing challenge. One component is an automatic
alignment mechanism (§III-B). It attempts to insert stuttering steps
on the fly to maintain the observational equivalence between C f

and Ce(Kc). We formalize the observational equivalence constraints
as CNF formulas so that they are compatible with SAT solvers.
The other component is the LIM key condition synthesis algorithm
(§III-A). With LIM, the size of the key condition is agnostic to the
unrolling diameter, while the format of the key condition is irrelevant
to the observational equivalence constraints. These benefits ensure
feasibility and scalability for the DE2 algorithm. We also point out
that DE2 enables new opportunities in traversing the error matrix of
logic locking (§III-D).

A. LIM: A Parameter Synthesis Attack against Logic Locking

Each iteration in the SAT attack duplicates the logic-locked netlist
to create a new I/O constraint. As a result, clauses pile up quickly
within the SAT solver. It is observed that the execution time of each
SAT query increases super-linearly with the number of DIPs [17].
KC2 [17] compresses the I/O constraints to speed up computation,
but it still suffers from the drawbacks caused by netlist duplication.

We resort to formal verification to address this issue. We observed
that almost every symbolic formal verification method [28]–[31]
induces a corresponding logic decryption method. Table II shows

TABLE II: Symbolic verification vs. logic decryption.
SAT SMT BMC UMC ParamSynth

Symbolic DPLL Nelson Unroll ITP IC3-based
Verification (1960) (1979) (2001) (2003) (2015)

Logic [2] [27] [20] [17], [18] LIMDecryption (2015) (2019) (2017) (2019)

representative methods from both categories and the earliest year they
were proposed. Recently, a new formal verification method called
parameter synthesis has emerged [32], [33]. It aims to find the set
of all correct patterns, given which a parameterized state transition
system satisfies a safety property.

The SAT attack is essentially a covering process [34]: it terminates
when I/O constraints eliminate exactly all wrong keys. This process
is like parameter synthesis when the key variables are considered as
the parameters of the circuit and functional equivalence to the oracle
as the safety property. However, the adversary in the SAT attack has
only query access to the oracle. Therefore, the current parameter
synthesis methods cannot be used directly for logic decryption.

Algorithm 1 LIM: The Parameter Synthesis Attack Algorithm

1: Input: logic-locked netlist Ce, oracle circuit Co

2: Output: a correct key pattern Kc

3: W ← True
4: M ← Ce(X,K1,Y1) ∧Ce(X,K2,Y2)
5: while S AT [W ∧ M ∧ (Y1 , Y2)] do
6: Xd ← S AT [W ∧ M ∧ (Y1 , Y2)].model(X)
7: Yd ← Co(Xd)
8: Kw ← S AT [W ∧Ce(Xd,K,Y) ∧ (Y , Yd)].model(K)
9: K◦w ← S AT [W ∧Ce(Xd,K,Yd), {Kw}] ▷ refer to §II-C

10: W ← W ∧ ¬K◦w▷ eliminate a generalized cube of wrong keys
11: Kc ← S AT [W].model(K)

With all the observations above, we propose LIM (less-is-more),
an algorithm that incrementally extracts information from the I/O
constraints using parameter synthesis. LIM (Algorithm 1) maintains
a CNF formula W to block all incorrect keys discovered so far
(line 3). In each iteration, the algorithm finds a new incorrect key
Kw (line 8), and generalize it to a cube to cover multiple wrong keys
(line 9). Specifically, {Kw} is a set of unit clauses: each unit clause
corresponds to a literal in Kw. With {Kw} enforced to K, the SAT
query in line 9 must be unsatisfiable. Moreover, an SAT solver as
described in §II-C should return a minimal unsat core K◦w, which
is a prime implicant of the formula ¬(W ∧ Ce(Xd,K,Yd)). In other
words, K◦w is an irreducible cube distilled from both the current I/O
constraint and all the previously generalized cubes. At the end of
an iteration, the key condition W is updated by the negation of K◦w.
Finally, when no more DIPs can be found, a correct key is extracted
from the remaining keys within W (line 11).

Theorem 1. The parameter synthesis attack algorithm will even-
tually terminate. Upon termination, formula W excludes exactly all
incorrect keys.

Proof. Termination part: In every iteration, at least one incorrect key
will be discovered and conjoined to W. Meanwhile, there is only a
finite number of incorrect keys.
Soundness part: A Kw produced in line 8 must be an incorrect key,
because the output pattern Y generated by Xd and K is inconsistent
with the reference output Yd. By the same reasoning, all K◦w cubes
contain only incorrect keys.
Completeness part: If an incorrect key is not yet excluded by W, the
SAT query on line 5 will be satisfiable. In this case, the algorithm is
not terminated, which conflicts with the condition. □

B. Automatic Alignment of Clock Cycles

Definition 1 states a criterion to determine whether two circuits
are observationally equivalent: for any particular input sequence, the
output sequences of the two circuits are identical after removing all
stuttering steps. We observe that removing a stuttering step from one
sequence is the dual of inserting a stuttering step to the other at
the corresponding location. Inspired by studies on sequential formal
equivalence checking [35], [36], we propose the following strategy
to automatically enforce a sound equivalence relation to C f and Ce:
Automatic Alignment Mechanism. Whenever C f ’s output pattern
changes, stall C f until Ce’s output pattern also changes. Likewise,
let Ce wait for C f whenever it is faster.

We use the example in Figure 2 to illustrate this mechanism.
Suppose the initial values of x and y are 6 and 10, and only
the final states of both designs are observable. This mechanism
will insert stuttering steps before the final state of gcdspec, because
only then the output pattern is changed. The execution traces of
gcdspec and gcdimpl are ⟨(6, 10), (6, 4), (2, 4), (2, 4), (2, 4), (2, 4), (2, 2)⟩
and ⟨(6, 10), (10, 6), (4, 6), (6, 4), (2, 4), (4, 2), (2, 2)⟩, respectively. For
another example, suppose gcdspec and gcdimpl are modified so that
the smaller value between x and y is always observable in every
clock cycle. In that case, stuttering steps are periodically inserted to
gcdspec to ensure equivalence. The execution traces of gcdspec and
gcdimpl become ⟨(6, 10), (6, 10), (6, 4), (6, 4), (2, 4), (2, 4), (2, 2)⟩ and
⟨(6, 10), (10, 6), (4, 6), (6, 4), (2, 4), (4, 2), (2, 2)⟩, respectively. It can be
seen that alignment is deterministic given the data and the observ-
ability condition, thus significantly reducing the search space of DE2.
The following lemma proves the correctness of this mechanism.

Lemma 2. C f and Ce are observationally equivalent if and only if the
automatic alignment mechanism produces identical output sequences
for any input sequences.

Proof. Only If part: To show that the output sequences of the two
circuits are identical, we split the output sequence of the slower circuit
into segments: the first step in a segment is a critical step (whose
output pattern is different from the previous step), and the rest of
the steps in that segment are stuttering steps (whose output pattern is
the same as the previous step). The above mechanism is to process
the segments of the faster circuit’s output sequence successively. For
every segment, it attaches dummy stuttering steps until it matches
the corresponding segment of the slower circuit.
If part: After removing all stuttering steps, two initially identical
sequences are still identical. Hence, by Definition 1, two circuits
are observationally equivalent if their output sequences are always
identical given any input sequences. □

We implement this mechanism by constructing a product machine
consisting of C f and Ce. This machine detects whether exactly
one circuit will change its output value in the next clock cycle.
If so, that circuit will be stalled in the next clock cycle. If not,
both circuits can continue moving forward. In our implementation,
stalling is realized by adding a multiplexer and a feedback path
for every flip-flop. Furthermore, we add a miter to the product
machine to determine whether the output values of the two circuits
are always identical. The miter outputs True if they output distinct
patterns at any clock cycle. Finally, we add a bounded fairness
constraint [37], which enforces both circuits to move forward at least
once in every n consecutive steps. To check whether the two circuits
are observationally equivalent, one can call a model checker on the
product machine, and use the miter output as the safety property.

Our approach is more suitable for logic decryption than sequential
equivalence checking techniques such as Kairos [35] for the following

reasons: a) it does not require valid or ready signals for synchro-
nization; b) it will not produce a false negative when either of the
circuits is trapped in a deadlock state; c) it does not rely on special
techniques like clock gating, so the generated product machine can
be easily encoded as CNF formulas.

C. The DE2 Algorithm

Algorithm 2 The DE2 Algorithm

1: Input: logic-locked netlist Ce, synthesized netlist Cd

2: Output: a correct key pattern Kc

3: k ← 1
4: W ← True
5: Ms ← Ce(X,K,Y1) ×Cd(X,Y2)

▷ construct the product machine with automatic alignment
6: while True do
7: Mu ← unroll(Ms, k)
8: while S AT [W ∧ Mu ∧ (Y1 , Y2)] do
9: Xd ← S AT [W ∧ Mu ∧ (Y1 , Y2)].model(X)

10: Kw ← S AT [W ∧ Mu ∧ (X = Xd) ∧ (Y1 , Y2)].model(K)
11: K◦w ← S AT [W ∧ Mu ∧ (X = Xd) ∧ (Y1 = Y2), {Kw}]
12: W ← W ∧ ¬K◦w
13: Kp ← S AT [W].model(K)
14: if UMC[Ms ∧ (K = Kp) ∧ (Y1 , Y2)] = False then
15: Kc ← Kp

16: break
17: k ← k + 1 ▷ increase the unrolling diameter
18: return Kc

With a correct key Kc, the miter should never output a True for
any input sequences. In other words, the correct key can be extracted
from the model if a False is asserted for all input sequences (∃Kc s.t.
∀ input sequences: miter’s output = False). Unfortunately, due to the
quantifier alternation [36] in the expression, immediately extracting
Kc is still infeasible.

Hence, the DE2 algorithm (Algorithm 2) iteratively blocks incor-
rect keys until it finds a correct one. It builds a product machine
Ms with the automatic alignment mechanism (line 5). Mu denotes
the unrolled product machine with an initial unrolling diameter of 1.
The inner loop of the algorithm (line 8-12) is similar to LIM. The key
condition W is strengthened until it blocks exactly all incorrect keys
activating the miter (Y1 , Y2) up to the current unrolling diameter.
However, checking for termination is time-consuming [21] because
the required unrolling diameter is unknown. In this regard, we
develop a new condition, trial-and-error (TE), for improved efficiency.
This condition first extracts a potentially correct key Kp from W
(line 13). It then queries an unbounded model checker (UMC) for
the correctness of Kp (line 14). Since the search space is now limited
to just a single key, the execution time of model checking is greatly
reduced.

Theorem 3. The DE2 algorithm will eventually terminate and return
a correct key.

Proof. Termination part: In every iteration, at least one incorrect key
will be discovered and conjoined to W. Hence, the algorithm will
eventually terminate.
Correctness part: From Lemma 2 and Theorem 1, the algorithm
must return a correct key if a Kc exists such that C f and Ce(Kc)
are observationally equivalent. □

x0

x1

x2

k0

k1

k2

x \ k 000 001 010 011 100 101 110 111
000 0 0 0 0 0 0 1 0
001 0 0 0 0 0 0 0 1
010 0 0 0 0 1 0 0 0
011 0 0 0 0 0 1 0 0
100 0 0 1 0 0 0 0 0
101 0 0 0 1 0 0 0 0
110 1 0 0 0 0 0 0 0
111 0 1 0 0 0 0 0 0#key=001

(b)(a)

AND-tree
y

Fig. 4: (a) A 3-input AND-tree protected by input-flip locking [5]. (b)
The corresponding error matrix. Shadowed entries with underscores have
incorrect outputs.

D. White-box Attack Against Logic Locking

The error matrix is a powerful tool for analyzing the complexity of
an attacking algorithm against a logic locking scheme. Each row in
the error matrix represents an input pattern, each column represents
a key pattern, and each entry represents whether the output pattern
of the logic-locked netlist deviates from the correct output pattern. In
the original SAT attack, every query to the oracle circuit can reveal
only one row of the error matrix. Existing logic locking schemes [3],
[4] exploit this limitation to thwart the SAT attack. They ensure that
the error rate is exponentially small in the number of input patterns.
Formally speaking, for every column representing an incorrect key,
there is only a limited number of incorrect entries.

DE2 gives the adversary another degree of freedom when travers-
ing the error matrix. We use a case study to demonstrate the capability
of the white-box attack. Figure 4(b) plots the error matrix of an AND-
tree protected by input-flipping locking. Once the attacker discovers
the dominant row (X = 111), it will immediately exclude all incorrect
keys. Assuming an SAT solver that selects the next row uniformly at
random [2], the attacking algorithm must search through half of the
rows on average until it finds the dominant one. Facilitated by the
automatic alignment mechanism, DE2 has almost white-box access
to Ce, which allows it to quickly locate the dominant row using SAT-
based model enumeration. Specifically, it randomly selects a row,
K∗, and queries S AT [Ms ∧ (K = K∗) ∧ (Y1 , Y2)].model(X) for a
new assignment X∗. If such an assignment does not exist, K∗ must
be correct. Otherwise, it conjoins ¬X∗ to the formula and repeats
the above query. Because the number of satisfiable rows for a given
K∗ is exponentially smaller than the number of feasible DIPs in this
example, the white-box attack can be significantly faster than the
SAT attack. The white-box attack can be adapted to defeat other
logic locking schemes.

IV. EVALUATIONS

A. Experimental Setup

We built a prototype for LIM and DE2 in Python. We chose
Boolector [38] and Z3 [39] as the backend SMT solvers, because
we observed that they are more efficient on hardware benchmarks
in terms of SAT solving and unsat core extraction, respectively.
We employed the property-directed reachability command pdr [40]
from Berkeley ABC for unbounded model checking. All experiments
are conducted on a Linux machine with a 3.2GHz CPU, and every
instance was executed on a single thread. We set a memory limit of
4GiB and a timeout limit of 3,600 seconds for all experiments. We
assess the effectiveness and efficiency of LIM and DE2 by answering
the following research questions:
RQ1. Does LIM, the core module of DE2, have a better performance
over existing sequential logic decryption algorithms?
RQ2. Is DE2 realistically applicable to the situation where only a
functional description is available?

TABLE III: A comparison of execution time (seconds) for KC2, RANE,
and LIM on XOR-locked sequential benchmark circuits.

Overhead 5% 10% 15%
Method KC2 RANE LIM KC2 RANE LIM KC2 RANE LIM

s208 − − − − 0.6 1.8 − − −

s298 0.1 0.7 1.6 − − − 1.2 2.4 4.7
s344 0.4 0.6 1.6 0.3 0.9 2.7 0.5 1.1 3.6
s349 0.1 0.4 1.1 0.1 0.5 1.5 1.0 1.1 4.1
s382 106 120 47.1 104 63.1 34.2 − − −

s386 0.1 0.8 1.0 0.2 0.9 2.3 0.3 0.7 4.1
s400 88.6 62.6 27.0 − − 278 − − 2772
s444 − 3507 − − − − − − −

s510 1.8 3.6 12.1 0.7 1.4 13.4 39.1 34.7 861
s526 − − − − 1451 2839 − − −

s526n 80.8 − − − 92.9 2014 − − −

s641 0.5 1.2 3.1 0.4 − 4.9 − − −

s713 0.4 2.6 3.2 1.5 3.3 7.1 − − −

s820 3.1 4.7 8.7 6.8 6.9 12.4 16.6 10.8 22.0
s832 1.8 2.9 7.2 7.3 6.6 15.3 12.5 9.7 27.3
s838 − − − − − − − − −

s953 − − 12.8 − − 18.4 − − 57.6
s1196 0.5 3.7 3.7 1.1 − 6.7 6.0 5.2 15.8
s1238 0.5 1.8 3.5 1.3 3.8 11.8 2.0 4.1 13.3
s1423 − 1912 575 − − 1884 − − −

s1488 8.1 10.1 36.0 22.2 14.1 99.2 187 44.9 229
s1494 4.0 5.5 21.8 94.4 28.2 125 91.8 19.9 187
s5378 − − − − − − − − −

s9234 − − − − − − − − −

B. LIM for Standard Sequential Logic Decryption

To answer RQ1, we compared LIM against the state-of-the-art
sequential logic decryption algorithms, including the KC2 com-
mand [17] in NEOS and the RANE decryption suite [18]. We used
the default settings of the oracle-guided sequential SAT attack for
both algorithms. Since neither of them selects UMC (§II-D) as a
termination condition, we also disabled UMC for LIM to foster fair
comparisons. We incremented the rolling diameter by 1 in each step
and set an upper limit of 100 steps for all algorithms.

We used the ISCAS’89 [41] sequential benchmark circuits for
our evaluations. We locked the circuits with two prevalent logic
locking schemes: i) randomly inserting key-controlled XOR gates
to the combinational part of a circuit [2], and ii) the HARPOON
sequential logic locking scheme [25], which requires an unlocking
input sequence to steer a circuit from its reset state to its actual initial
state. We constructed three logic-locked instances with different
locking overheads for each benchmark circuit. We followed the
same methodology as KC2 [17], which represents key sizes as the
percentage increases in gate counts (overheads). In particular, we
used the default CMOS cells library in Yosys [42] to measure the
gate counts after technology mapping. For instance, a 15% overhead
corresponds to 82 bits for s1196 and 443 bits for s5378, respectively.

Table III compares the execution time of the three algorithms
on XOR-locked instances. It appears that these algorithms have
similar overall performances. Due to the unrolling, sequential logic

10 1 100 101 102 103

time (seconds)

0

20

40

de

cr
yp

te
d

in
st

an
ce

s

(a) XOR/XNOR Locking

RANE
KC2
LIM

10 1 100 101 102 103

time (seconds)

0

20

40

de

cr
yp

te
d

in
st

an
ce

s

(b) HARPOON Locking

RANE
KC2
LIM

Fig. 5: Comparisons of the number of decrypted instances over time by
different methods.

TABLE IV: Execution time (seconds) of DE2 on XOR-locked sequential
benchmark circuits.

Overhead 5% 10% 15% Overhead 5% 10% 15%
s208 2.4 31.9 605 s713 62.0 998 820
s298 0.9 18.3 901 s820 13.8 77.2 706
s344 1.0 6.3 683 s832 17.8 43.0 409
s349 0.9 10.8 1566 s838 − − −

s382 365 − 1079 s953 38.8 1350 −

s386 0.6 114 131 s1196 619 16.4 601
s400 296 1170 − s1238 5.0 11.4 706
s444 155 − − s1423 − − −

s510 207 174 − s1488 46.0 146 −

s526 − − − s1494 339 804 −

s526n − − − s5378 − − −

s641 3.9 634 669 s9234 − − −

TABLE V: Statistics of high-level synthesized benchmark circuits.
Circuit #PI #PO #FF #Gate
euclid 8 5 11 - 22 231 - 315

gcd 8 5 11 - 37 255 - 766
barcode 9 10 17 - 35 279 - 591
counter 6 5 17 - 34 357 - 469
numeric 12 13 15 - 30 506 - 623

fuzzy 13 5 33 - 51 669 - 963
diffeq 20 13 27 - 42 864 - 1073
ellipf 32 33 33 - 63 1339 - 1433

kalman 22 9 14 - 69 1507 - 1909
wavef 32 33 72 - 108 1788 - 2183

decryption algorithms generally cannot scale to large sequential
circuits like s5378 and s9234. Additionally, Figure 5 compares the
three algorithms by the number of decrypted instances over time. It
displays how many instances out of 72 can be decrypted (the vertical
axis) by each algorithm if all instances are assigned the same timing
budget (the horizontal axis). LIM is initially slower than the other
two, but it eventually stands out. After 3,600 seconds, it decrypts 23%
and 17% more instances than KC2 and RANE, respectively. Due to
the page limit, we omit the table of the HARPOON experiments. LIM
can decrypt 13% more instances than either of the other algorithms
within 3,600 seconds on HARPOON-locked instances. Hence, we
conclude that LIM has a better performance than the state-of-the-art
logic decryption algorithms for higher timing budgets.

C. DE2 for Description-guided Logic Decryption

To answer RQ2, we evaluate the capability of DE2 on a variety
of benchmarks. We used the same settings as §IV-B except that we
restored UMC as a termination condition.

For every instance in Table III, we inserted a stalling logic to extend
its period by a constant. Existing I/O attacks cannot be applied to this
scenario without exactly knowing this constant, because the oracle
circuit Co and the logic-locked netlist Ce are different in timing.
Table IV summarizes the results of DE2 on these instances. DE2 can
decrypt 64% of the instances within 3,600 seconds, and the average
execution time of decrypted instances is 694.5 seconds. Meanwhile,
as shown in Table III, LIM can decrypt 68% of the instances within
3,600 seconds, and the average execution time of decrypted instances
is 41.6 seconds. Although the results in Table IV are not directly
comparable with those in Table III, we emphasize that most instances
solvable by LIM are also solvable by DE2. We also observed that the
TE strategy significantly reduces the execution time of UMC. This
improvement is vital because UMC can dominate the total execution
time on those instances which require a large unrolling diameter.

We designed another experiment to assess DE2 in a more re-
alistic setting. We used a high-level synthesis tool, Vivado HLS,
to synthesize a set of behavioral-level designs from the HLSynth
benchmark suite [43] to RTL designs. We utilized HLS pragmas,

TABLE VI: Execution time (seconds) of DE2 on high-level synthesized
sequential benchmark circuits.

Latency Small Medium Large
Overhead 3% 5% 10% 3% 5% 10% 3% 5% 10%

euclid 0.7 97.8 6.3 1.6 8.9 − 19.9 1547 −

gcd 23.0 − − 504 − 1.2 11.7 3569 −

barcode 2.0 907 − 7.0 42.4 181 − 5.1 −

counter 191 13.1 7.8 3.4 14.2 6.0 2.0 43.7 3.2
numeric 2.9 1437 48.7 2.0 − 203 3.6 1.3 −

fuzzy 34.7 − − 1.8 − − − 45.8 −

diffeq 2.3 61.4 140 2.6 3.1 − − − −

ellipf 12.9 13.3 257 640 − − − 5.5 5.7
kalman 130 8.6 − − 9.1 − − − −

wavef − − − 239 219 − − − 142

including pipeline, initiation interval, resource allocation, latency,
unroll, flatten, partition, balance, etc., to control an RTL design’s
timing. For each behavioral design, we generated 4 RTL designs
with distinct latencies. Afterwards, we applied Yosys [42] to map
them to gate-level netlists. We treated the netlist with the smallest
latency as the reference netlist Cd. Each of the remaining netlists
of the same behavioral design is logic-locked by the XOR locking
scheme with different locking overheads. As such, we constructed 9
instances of the logic-locked netlist Ce for every behavioral design.
Table VI shows the execution time of DE2 on realistic test cases.
Given a timing budget of 3,600 seconds, DE2 successfully decrypts
73%, 67%, and 40% of the instances that are logic-locked with 3%,
5%, and 10% of overheads, respectively. All these results demonstrate
the effectiveness and usefulness of DE2 under the new adversarial
model.

Finally, we compared the white-box DE2 (§III-D) against the
standard DE2 (§III-C) to showcase the advantage of traversing the
error matrix from both directions. The benchmark circuits are logic-
locked with the double-flip locking scheme [44] which guarantees
exponentially low error rates. As depicted in Figure 6, the highest
speedup achieved by the white-box DE2 is 144×. We also noticed that
the improvements are more prominent with larger input sizes. This
is because there is only a limited number of incorrect entries in each
column of the error matrices. Notice that many other recent defense
schemes with exponentially low error rates [1] are also vulnerable to
this white-box attack.

s298
s382

s444
s526

s526n
s400

s386
s1488

s1494
s344

s349
s208

s1196
s1238

s953
s1423

s820
s832

s510
s9234

s838
s5378

s641
s7131x

10x

100x SAT query ratio
time ratio

10 bits

20 bits

30 bitsinput size

Fig. 6: White-box DE2 vs. standard DE2 on logic-locked benchmark
circuits with exponentially low error rates. The left coordinate measures
the acceleration ratio, and the right coordinate measures the number of
input bits.

V. CONCLUSION

This paper investigates whether logic locking is susceptible to I/O
attacks without a cycle-accurate oracle circuit. Our study reveals
that an adversary can still launch a sequential SAT attack using a
functional specification of the victim circuit. This result calls for new
efforts to reassess existing logic locking techniques and to enhance
their security. The proposed DE2 algorithm provides a method to
evaluate the security of logic locking under the new adversarial
model.

REFERENCES

[1] H. M. Kamali, K. Z. Azar, F. Farahmandi, and M. Tehranipoor, “Ad-
vances in logic locking: Past, present, and prospects,” Cryptology ePrint
Archive, 2022.

[2] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in HOST 2015, pp. 137–143.

[3] M. Yasin, B. Mazumdar, J. J. Rajendran, and O. Sinanoglu, “Sarlock:
Sat attack resistant logic locking,” in HOST 2016, pp. 236–241.

[4] Y. Xie and A. Srivastava, “Anti-sat: Mitigating sat attack on logic
locking,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 2, pp. 199–207, 2018.

[5] H. Zhou, A. Rezaei, and Y. Shen, “Resolving the trilemma in logic
encryption,” in ICCAD 2019, pp. 1–8.

[6] K. Zamiri Azar, H. Mardani Kamali, H. Homayoun, and A. Sasan,
“Threats on logic locking: A decade later,” in GLSVLSI 2019, pp. 471–
476.

[7] A. Alaql, D. Forte, and S. Bhunia, “Sweep to the secret: A constant
propagation attack on logic locking,” in AsianHOST 2019, pp. 1–6.

[8] L. Li and A. Orailoglu, “Piercing logic locking keys through redundancy
identification,” in DATE 2019, pp. 540–545.

[9] D. Duvalsaint, X. Jin, B. Niewenhuis, and R. Blanton, “Characterization
of locked combinational circuits via atpg,” in ITC 2019, pp. 1–10.

[10] P. Chakraborty, J. Cruz, and S. Bhunia, “Sail: Machine learning guided
structural analysis attack on hardware obfuscation,” in AsianHOST 2018,
pp. 56–61.

[11] L. Alrahis, S. Patnaik, M. Shafique, and O. Sinanoglu, “Omla: An oracle-
less machine learning-based attack on logic locking,” TCAS II, vol. 69,
no. 3, pp. 1602–1606, 2021.

[12] Y. Zhang, P. Cui, Z. Zhou, and U. Guin, “Tga: An oracle-less and
topology-guided attack on logic locking,” in Proceedings of the 3rd ACM
Workshop on Attacks and Solutions in Hardware Security Workshop,
2019, pp. 75–83.

[13] A. Jain, Z. Zhou, and U. Guin, “Taal: tampering attack on any key-based
logic locked circuits,” TODAES, vol. 26, no. 4, pp. 1–22, 2021.

[14] Synopsys, “Virtualizer models,” https://www.synopsys.com/verification/
virtual-prototyping/virtualizer-models.html, 2024.

[15] B.-Y. Huang, H. Zhang, A. Gupta, and S. Malik, “Ilang: A modeling
and verification platform for socs using instruction-level abstractions,”
in TACAS 2019, 2019, pp. 351–357.

[16] H. Lu et al., “The ila model database,” https://github.com/Princeton
University/IMDb, 2021.

[17] K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “Kc2: Key-condition crunching
for fast sequential circuit deobfuscation,” in DATE 2019, pp. 534–539.

[18] S. Roshanisefat, H. Mardani Kamali, H. Homayoun, and A. Sasan,
“Rane: An open-source formal de-obfuscation attack for reverse engi-
neering of logic encrypted circuits,” in GLSVLSI 2021.

[19] L. Cai and D. Gajski, “Transaction level modeling: an overview,” in
Proceedings of the 1st IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, 2003, pp. 19–24.

[20] M. El Massad, S. Garg, and M. Tripunitara, “Reverse engineering
camouflaged sequential circuits without scan access,” in ICCAD 2017,
pp. 33–40.

[21] Y. Hu, Y. Zhang, K. Yang, D. Chen, P. A. Beerel, and P. Nuzzo, “Fun-
sat: Functional corruptibility-guided sat-based attack on sequential logic
encryption,” in HOST 2021, pp. 281–291.

[22] M. Abadi and L. Lamport, “The existence of refinement mappings,”
Theoretical Computer Science, vol. 82, no. 2, pp. 253–284, 1991.

[23] N. Dershowitz, Z. Hanna, and A. Nadel, “A scalable algorithm for
minimal unsatisfiable core extraction,” in SAT 2006, pp. 36–41.

[24] J. Da Rolt, G. Di Natale, M.-L. Flottes, and B. Rouzeyre, “New security
threats against chips containing scan chain structures,” in HOST 2011,
pp. 110–110.

[25] R. S. Chakraborty and S. Bhunia, “Harpoon: An obfuscation-based soc
design methodology for hardware protection,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 10, pp. 1493–1502, 2009.

[26] A. R. Desai, M. S. Hsiao, C. Wang, L. Nazhandali, and S. Hall,
“Interlocking obfuscation for anti-tamper hardware,” in Proceedings of
the eighth annual cyber security and information intelligence research
workshop, 2013, pp. 1–4.

[27] K. Z. Azar, H. M. Kamali, H. Homayoun, and A. Sasan, “Smt attack:
Next generation attack on obfuscated circuits with capabilities and per-
formance beyond the sat attacks,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 97–122, 2019.

[28] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” Journal of the ACM (JACM), vol. 7, no. 3, pp. 201–215, 1960.

[29] G. Nelson and D. C. Oppen, “Simplification by cooperating decision
procedures,” ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), vol. 1, no. 2, pp. 245–257, 1979.

[30] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking
using satisfiability solving,” Formal methods in system design, vol. 19,
no. 1, pp. 7–34, 2001.

[31] K. L. McMillan, “Interpolation and sat-based model checking,” in CAV
2013, pp. 1–13.

[32] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “Parameter synthesis
with ic3,” in FMCAD 2013, pp. 165–168.

[33] S. Ben-David, B. Sterin, J. M. Atlee, and S. Beidu, “Symbolic model
checking of product-line requirements using sat-based methods,” in ICSE
2015, vol. 1, pp. 189–199.

[34] A. Petkovska, A. Mishchenko, D. Novo, M. Owaida, and P. Ienne,
“Progressive generation of canonical sum of products using a sat solver,”
in IWLS 2016.

[35] L. Piccolboni, G. Di Guglielmo, and L. P. Carloni, “Kairos: Incremental
verification in high-level synthesis through latency-insensitive design,”
in FMCAD 2019, pp. 105–109.

[36] Y. Li, G. Zhao, Y. He, and H. Zhou, “Se3: Sequential equivalence
checking for non-cycle-accurate design transformations,” in DAC 2023.

[37] N. Dershowitz, D. Jayasimha, and S. Park, “Bounded fairness,” Verifi-
cation: Theory and Practice: Essays Dedicated to Zohar Manna on the
Occasion of His 64th Birthday, pp. 304–317, 2003.

[38] A. Niemetz, M. Preiner, C. Wolf, and A. Biere, “Btor2, btormc and
boolector 3.0,” in CAV 2018, pp. 587–595.

[39] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in TACAS
2008, pp. 337–340.

[40] N. Eén, A. Mishchenko, and R. Brayton, “Efficient implementation of
property directed reachability,” in FMCAD 2011, pp. 125–134.

[41] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in ISCAS 1989, pp. 1929–1934.

[42] C. Wolf, J. Glaser, and J. Kepler, “Yosys-a free verilog synthesis suite,”
in Austrochip 2013, p. 97.

[43] P. R. Panda and N. D. Dutt, “1995 high level synthesis design repository,”
in ISSS’95, pp. 170–174.

[44] M. Yasin, A. Sengupta, B. C. Schafer, Y. Makris, O. Sinanoglu, and
J. Rajendran, “What to lock? functional and parametric locking,” in
GLSVLSI, 2017, pp. 351–356.

