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Abstract—Embedded FPGA (eFPGA)-based hardware redac-
tion has emerged as a promising technique for protecting the in-
tellectual property (IP) of integrated circuits. Existing approaches
select a subset of the logic at the register-transfer level (RTL)
and replace it with a programmable eFPGA module. However,
due to their lack of awareness of physical information, these
approaches incur significant power, performance, and area (PPA)
overhead on the resulting chip. This paper presents a physically
guided partitioning approach that divides the original design into
two parts: one implemented as an application-specific integrated
circuit (ASIC) and the other redacted onto an embedded FPGA
fabric. It leverages a graph neural network to encode both
the structural and physical information of each gate into an
embedding vector. It then employs a clustering and selection
process to identify the redaction candidate. Experiments demon-
strate that our approach consistently reduces timing overhead
while achieving comparable or superior results in terms of area,
security, and resource consumption.

Index Terms—hardware security, IP piracy, embedded FPGA,
logic locking, chip partitioning

I. INTRODUCTION

The semiconductor industry has shifted to a globalized
business model in which the integrated circuit (IC) supply
chain is outsourced to offshore manufacturing and testing
facilities. Design houses are facing mounting threats in terms
of IP piracy, reverse engineering, and overproduction [1].
According to a commission report by NBR [2], hardware TP
theft has caused an estimated financial loss of hundreds of
billions of US dollars to the industry.

Researchers have developed various techniques to enhance
the supply-chain security of ICs. Logic locking [3]-[5] inserts
key-controlled locking units to protect intellectual property
and resist security threats. Without knowing the correct key,
an adversary cannot recover the functionality of the original
circuit. IC camouflaging [6] disrupts the adversary’s capability
to extract the netlist of a circuit from imaging its physi-
cal layout. Split manufacturing [7] divides the fabrication
process across multiple foundries, with lower metal layers
manufactured by the untrusted foundries. However, all of
these techniques are susceptible to I/O query attacks [8], [9],
structural attacks [10], [11], or proximity attacks [12]-[14].
Moreover, they rely on special security primitives and incur
significant PPA overheads, preventing them from being widely
adopted by the industry.
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Recently, eFPGA-based hardware redaction [15] has
emerged as a more robust and efficient approach to safeguard
the supply chain of ICs. During the design process, the design
house replaces a small portion of the original circuit with
an embedded FPGA fabric. Upon completion of the man-
ufacturing process, the design house configures the eFPGA
with the correct bitstream to activate the chip’s functionality.
There exist effective ways to prevent the bitstream from being
tampered with by an adversary [16].

A central problem of eFPGA redaction is how to partition
the original circuit into two portions: the modules remain as
ASIC, and the remaining modules are to be redacted into an
FPGA. A desirable partitioning result can minimize the PPA
overhead of the resulting chip (in this work, we focus on
delay and area, as power typically correlates with area) while
maintaining the resiliency against I/O query attacks. Previous
work, such as SheLL [17] and the ALICE framework [18],
along with its successor ARIANNA [19], tackle this problem
primarily at the RTL. However, they cannot find the best
trade-off between performance, security, and cost of redac-
tion because they are unaware of the structural and physical
information of the chip.

To address these limitations, this paper proposes a
physically-aware eFPGA redaction approach that leverages
both structural and physical information to make optimal
partitioning decisions. Unlike existing RTL-level methods that
operate without knowledge of the final physical implemen-
tation, our approach performs complete synthesis and place-
and-route to extract precise timing, spatial, and connectivity
information. This physical awareness enables more intelli-
gent partitioning decisions that minimize PPA overhead while
maintaining strong security guarantees.

The main contributions of this paper are fourfold:

e We identify the core drawback of existing redaction tech-
niques: overlooking placement and timing information during
redacted region selection, which results in high PPA overheads.
e We propose a method to incorporate both structural and
physical information into a heterogeneous graph.

o We leverage self-supervised GNN training followed by k-
means clustering to keep adjacent cells with similar timing,
structural, and physical metrics in the same group.

e We develop a multi-objective group selection strategy to
achieve a desirable trade-off among PPA overheads, attack
resilience, and resource utilization.
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Fig. 1: General workflow of the proposed eFPGA redaction method.

e We conducted extensive experiments across various bench-
marks and technologies to demonstrate the consistent superi-
ority of the proposed method.

The remainder of this paper is organized as follows. Sec-
tion II presents the background and problem definition. Sec-
tion III details our physical-aware redaction methodology, in-
cluding graph construction, GNN training, node clustering, and
group selection algorithms. Section IV presents experimental
results and analysis. Finally, Section V concludes the paper
and outlines future research directions.

II. BACKGROUND AND PROBLEM FORMULATION
A. eFPGA-based Hardware Redaction

An FPGA is a reconfigurable circuit capable of implement-
ing different functionalities through a bitstream. An embedded
FPGA (eFPGA) is a complete IP core that can be integrated
into a chip alongside other components. Only entities pos-
sessing the eFPGA bitstream can recover the chip’s intended
functionality, making it an effective tool for IP protection. A
design house can exploit this feature by replacing a portion of
the original circuit with an eFPGA, preventing adversaries in
the IC supply chain from recovering the chip’s functionality.
Once the chip returns to the design house, the eFPGA is
programmed with the bitstream to restore its original behavior.
Compared with standard logic locking, eFPGA redaction is
more resilient to I/O attacks, as the interconnections and
lookup tables (LUTs) are inherently more complex than a
simple vector of key bits. Moreover, eFPGA redaction does
not require a dedicated key storage module, since the secret
is encoded directly in the bitstream.

ALICE [18] and SheLL [17] are two representative meth-
ods for eFPGA redaction. ALICE introduces an automated
flow to select crucial modules for redaction at the RTL level.
It identifies modules based on their impacts on designated
outputs, merges small independent modules, and makes selec-
tions based on hardware cost and security level. This approach
is further refined in the ARIANNA framework [19], which
extends ALICE by optimizing the eFPGA fabric parameters
to reduce hardware overhead. In contrast, SheLL selects the
interconnects between modules and their associated cells for
redaction to minimize redaction overhead.

B. GNN-based VLSI Physical Design Automation

The aforementioned redaction techniques focus on RTL or
structural levels and overlook physical design information. In

contrast, recent advances in GNNs enable the joint modeling
of structural and physical features, leading to more effective
optimization. An early effort is TP-GNN [20], which leverages
unsupervised graph learning to solve tier partitioning for
monolithic 3D ICs. Subsequent studies have explored the use
of GNNs across multiple stages of the design flow: Lu et
al. [21] employed a graph framework for placement optimiza-
tion, achieving improvements in wirelength and timing; Xie
et al. [22] introduced Net2, a graph attention model tailored
for pre-placement net-length estimation; Guo et al. [23] de-
veloped a timing-engine—inspired GNN for pre-routing slack
prediction; a recent work has explored GNN-based approaches
for timing analysis [24]. At a higher level of abstraction, Liu
et al. [25] proposed GraphPlanner for floorplanning, while
Ferretti et al. [26] applied GNNs to high-level synthesis
exploration. Collectively, these studies demonstrate that cir-
cuit graphs augmented with physical features can effectively
guide performance-driven design decisions. Inspired by these
advances, we extend graph learning to the security domain and
introduce a GNN-based framework for eFPGA redaction.

C. Attack Model and Security Considerations

The primary threat to eFPGA redaction is the I/O attack.
If an adversary gains access to an activated chip, it can
query the eFPGA part through the scan chain and observe the
corresponding outputs. In a SAT-based attack, the bitstream is
treated as a key vector, and the input-output pairs are used
to solve for the key [27]. Alternatively, approximate logic
synthesis techniques can be employed to reconstruct the bit-
stream [28]. In practice, both approaches become inapplicable
when the bitstream exceeds 4,000 bits.

D. Problem Definition

Given a circuit netlist N = (V,,V},) where V represents
the gate set and V,, represents the net set, the goal of
an eFPGA redaction algorithm is to construct a partition
IT: N — {Nasic, Nerpca }, such that the PPA overheads after
redaction are minimized, resilience against eFPGA I/O attacks
is ensured, and all eFPGA resource constraints are satisfied.
Existing RTL-level approaches cannot fully capture physical
design information, often resulting in suboptimal partitioning.

III. PHYSICAL-AWARE EFPGA REDACTION FLOW
A. Overview

The general design flow of the proposed eFPGA redaction
method is shown in Fig. 1. It consists of the following stages:



(1) Extracting physical information. Starting from an RTL
design, we perform logic synthesis and physical design to
generate a physical layout. As such, we can extract the detailed
physical information for each gate.

(2) Constructing heterogeneous graph. We construct a hetero-
geneous graph that represents the circuit with various nodes
and edges. Each node contains coordinates, connectivity, and
timing information of the corresponding gate or net.

(3) Training GNN encoder. We use a self-supervised learning
strategy to train a GNN encoder. Specifically, we perform
contrastive learning to generate an embedding vector for each
node to capture the essential structural and physical informa-
tion. During training, each node aggregates information from
its neighbors to update its own representations.

(4) Gate clustering. We perform k-means clustering to par-
tition the design into disjoint groups. Each group comprises
gates that have similar embeddings and are connected to each
other.

(5) Selecting group. We evaluate the groups according to their
structural, physical, I/O, and security characteristics. The one
satisfying all design constraints and achieving the best result
is selected to be redacted to the eFPGA.

B. Graph Construction and Feature Engineering

We construct a heterogeneous graph G = (V, E) to model
the netlist of a circuit. We create a gate node for each
standard cell and a net node for each net. We create two edges
(g,n),(n,g) € E between a gate node g € V,, and a net node
n € V,, if they are connected in the orlglnal netlist. These
operations yield a bipartite graph, whose nodes are divided
into two disjoint sets V; and V,,. This graph preserves the
topology of the original netlist.

In addition to structural information, we perform physical
design to obtain physical information. Then we annotate each
node with the following features:

o Structural features. These include cell type (as a one-hot
vector), connectivity to primary inputs and outputs, fan-in
degree, and fan-out degree.

o Timing feature. We use the slack t, to represent the criticality
of a gate. In practice, we use OpenSTA [29] to collect
maximum delay paths between pairs of registers and update
t, of each gate to the worst value.

e Physical features. These include x and y coordinates in the
physical layout, distance to the layout boundaries, and the half-
perimeter wirelength of the net driven by the node.

All features are normalized to foster effective learning. In
particular, x and y coordinates are normalized by the width
and height of the layout.

C. Network Configuration

To facilitate the downstream task, we employ a GNN
to generate an embedding vector h, for every gate node.
Specifically, we construct a heterogeneous graph attention
network (GAT) [30] (Fig. 2, left) that takes a heterogeneous
graph as input and adopts the following architecture:
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Fig. 2: GNN-based redacted region selection.

e Layer 1: A multi-head GATConv (Graph Attention Convo-
lution) component is applied to every heterogeneous edge, i.e.,
g — n or n — g. As such, the network can focus on the most
relevant features for each node and learn different weights for
different connections. A HeteroConv component is applied
to manage message passing and aggregation between nodes.
The output dimension is H x h, where H is the number of
heads and h is the size of the intermediate node representation.
e Layer 2: It is similar to Layer I, except that we choose
single-head GATConv to reduce the output dimensionality.
Therefore, the output dimension for each node is h.

e Layer 3: It is a 2-layer multi-layer perceptron with ReLU as
the activation function, followed by a ¢5-normalization layer. It
outputs a d-dimension embedding vector for every gate node.

D. Loss Function

Due to the absence of ground-truth labels, we solve the
redaction problem with unsupervised learning. The loss func-
tion consists of three terms:

Ly,=Ls+ Ly + Ly, (1)

where £,, denotes the total loss of the unsupervised learning
task, L4 denotes the similarity loss, £, denotes the boundary
loss, and £; denotes the timing loss.
e Similarity loss [31] [32] [33]: This term is expected to reach
its minimum when adjacent gates have similar embeddings and
distant gates have different embeddings. Consequently, gates
within the same area have a high probability of being assigned
to the same group. Algorithm 1 summarizes our approach to
prepare training data for each gate node. It enumerates all
edges in the heterogeneous graph and collects both positive



Algorithm 1 Collect Training Data for Similarity Loss.

Require: A heterogeneous graph G = (V, UV, E)

Ensure: A set of training data D. Each sample is a triple
(g,pos,N'), where g € V, is an anchor, pos € V,, is
a positive neighbor, and N' C V,, is a set of negative

neighbors.
:D+o
2: for all edge(g,n) € E do > for every (gate, net) pair
3: pOs <—n > positive net
4: Sample ws € V;, s.t. (g,ws) ¢ E > soft negative net
5: Sample wy, € V,, s.t. (g, wn) ¢ E

A deg(wy) =~ deg(n) > hard negative net

6 N« {ws,wn}
7: D <+ DU {(g,pos, N)}
8: end for
9: return D

and negative examples as training data. A positive example
(g, pos) corresponds to an edge in the original graph. A soft
negative example (g,ws) is a random pair where the two
nodes are not adjacent in the original graph. A hard negative
example (g, wy,) further requires that w, matches pos in some
designated attributes, such as net size and slack. The similarity
loss is defined as

Es(g7pos) =
exp(hg-hyes/7)
exp(hy-hyos/7) + >, cpexp(hy-hy, /7)

The temperature constant 7 scales the logits before the soft-
max, thereby controlling the sharpness of positive pairs over
the negative ones.

e Boundary loss: 1/0 resources are usually the bottlenecks
of eFPGA redaction. We design a simple term to penalize
excessively large cut sizes of groups after clustering. Specifi-
cally, we collect a set of random positive and negative training
examples, and use the cross-entropy loss:

Ly =— Z IOg(U(hghw)) - Z log(l —g(hg.hw)) ,

(g:w)~E (g:w)%E
3)

where o denotes the sigmoid function. Notice that we
do not aim for a minimum input size, as doing so may
reduce robustness against I/O attacks. Compared to the spectral
clustering method [34], the boundary loss is substantially
easier to compute.
o Timing loss: The speed of an eFPGA is typically much
slower than that of an ASIC. To account for the timing
difference between the two types of hardware, we need to
ensure that all gates in the redacted group have sufficiently
large positive slacks. This approach allows the chip after
redaction to achieve optimized performance. Formally,

— log 2

H={veV,|s, >0} )

represents the set of gates that have high positive slacks above
a threshold 6 and are therefore insensitive to timing variations.

We expect the embedding vectors of these gates to be close
to each other. Hence, we draw a set of random pairs P from
‘H and penalize the opposite with the following term:

1
L= — g h,
t |7)| ( H

a,b)~P

by )

E. Clustering and Group Selection

Given the embedding vectors generated by the GNN, we
apply unsupervised clustering to partition the original design
into disjoint groups, ensuring that all gates within the same
group have similar embeddings. We use the standard k-means
algorithm [35], setting k slightly larger than the ratio of the
total number of gates to the eFPGA capacity. As a result,
most of the groups after clustering can be accommodated in
the eFPGA. Afterward, we select a suitable group according
to the following criteria:

e Group size. The group size |G;| represents the number of
gates within a group G;.

e Bitstream size. B; denotes the length of eFPGA bitstream.
We require Bnin < B; < Bunax, S0 that the group is suitable
for the eFPGA and is sufficiently large to resist I/O attacks.
e J/0 size. Input size I; denotes the number of primary inputs
within the fan-in cone of G;. Output size O; denotes the
number of primary outputs within the fan-out cone of G;.

e Security score. The security score measures the I/O attack
complexity on a group:

Q; =1; + log(O; +1). 6)

We let I; dominate (); because the attack complexity is
mainly determined by the input size [36]. We set a minimum
threshold @,,;, and require Q; > Qmin-

o Slack score. The slack score S; is the worst slack among
all gates within a group, ie., S; = mingeq, t,. We require
S; > Smin so that all gates within a group have sufficiently
large positive slacks.

e Boundary ratio. For a group G;, the boundary ratio p; is
defined as the number of out-connecting edges divided by
|G;|. Tt estimates the intensity of I/O resource usage. We set
a maximum threshold pn,.x and require p; < Pmax-

We exclude all groups that violate any of the above con-
straints. We rank the remaining groups according to a score
function, which is elaborated in Section IV-C.

IV. EVALUATIONS
A. Experimental Setup

We implement the proposed eFPGA redaction framework in
PyTorch, using PyTorch Geometric [37] for GNN construction
and training. All experiments are performed on a Linux laptop
equipped with 32 GB of RAM, an Intel Ultra 185H processor,
and an NVIDIA RTX 4090 Mobile GPU. We set a time limit
of 12 hours for each SAT-based attack.

We evaluate our method on a set of open-source designs
from the OpenROAD repository [29]. They include cryp-
tographic modules (aes), RISC-V processor cores (ibex,
riscv32i), multimedia codec (jpeg), and network controller
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Fig. 3: Comparing area and delay overheads introduced by different redacted region selection methods.

(ethmac). The main characteristics of these benchmark cir-
cuits are summarized in Table I. To foster a fair comparison
with existing work, we report the number of modules, the
number of module instances, the range of I/O pin counts across
all modules, and the total cell count.

TABLE I: Characteristics of benchmark circuits.

Design #Modules  #Instances  #I/O pins  #Cells
aes 4 22 (16, 388) 15057
ibex 24 32 (4, 873) 15874
jpeg 83 148 (25, 784) 60745
riscv32i 25 66 (4, 223) 4698
ethmac 37 65 (6, 402) 58747

B. Baseline Selection

We compare the proposed redacted region selection method
with two representative eFPGA redaction techniques. Module-
level redaction such as ALICE leverages design engineer’s
expertise [15] or an automated workflow [18] to identify
RTL modules for redaction. In our experiments, we prioritize
modules with critical functionalities and clean boundaries.
Routing-centric redaction such as SheLL [17] instead selects
the interconnections between modules as redaction candidates.
In our experiments, we prioritize critical interconnection nets
and their neighboring cells in adjacent modules. Each row in
Table II presents the selected redacted region along with its
coverage ratio, measured as a percentage of the total cell count
of benchmark circuit.

C. Implementation Details

(1) Feature extraction. We use OpenROAD to perform pre-
liminary physical design, enabling the extraction of desired
physical information. Across all benchmarks, this process
takes between 0.22 and 2.56 hours, with an average runtime of
1.64 hours. This is a one-time investment for each benchmark.
To demonstrate the generality of the proposed method, we
employ different standard cell libraries: Nangate 45nm [38] for
aes, ibex, and jpeg; SkyWater 130nm [39] for riscv32i;
and ASAP7 [40] for ethmac.

(2) GNN training. We set the number of attention heads
to H = 4, the intermediate dimension to h 128, the
temperature constant to 7 = 0.5, and the dropout rate to 0.2.
The batch sizes for the similarity, boundary, and timing losses

TABLE II: Redacted regions and their coverage ratios.

Design Method Redacted Region Cov(%)
Prop.  group 2 3.96

aes SheLL top-level AES datapath routing nets 7.32
ALICE key-gen block aes_key_expand_128 6.80

Prop.  group 76 1.15

ibex SheLL if-id routing nets 1.14
ALICE control and status register block ibex_csr 1.00

Prop.  group 60 1.16

jpeg SheLL dct—rquant+zigzag—rentropy routing nets 1.76
ALICE quantization divide unit div_uu 1.65

Prop. group 1 10.94

riscv32i SheLL if-id routing nets 11.24
ALICE decode/control block controller 17.03

Prop.  group 72 1.17

ethmac SheLL RX/TX interface routing nets 0.90
ALICE eth_wishbone | register block 1.42

are 512, 1024, and 256, respectively. When computing the
total loss, we assign a weight of 0.5 to the similarity loss and
0.25 to both the boundary and timing losses. Optimization is
performed using Adam with a learning rate of 0.001. The GNN
model is trained for 200 epochs, with early stopping applied
if no improvement is observed over 20 consecutive epochs.
(3) Clustering and group selection. Once a group G; satisfies
the constraints in III-E, it is retained and assigned a composite
selection score:

Score; = aBj°™ 4+ [BS7T 4+ 4 Q7™ (7
where ¢ bt
est_bits;
Brom™ = (1, O DI ) 8
' i bits_thresh ®)
Bt linearly scales the estimated configuration bits

(est_bits;) by the bit threshold (bits_thresh); S;°™ repre-
sents the slack score of the group, normalized by the maximum
across all groups; similarly, Q°™ denotes the normalized se-
curity score. All retained groups are then ranked in descending
order of Score;, and the top candidate is selected for eFPGA
redaction. We set the score weights to « 2.0, B = 3.0,
and v = 1.0. Since all groups already satisfy the security
threshold Q"™ > Qmin, the relatively small weight on ~
ensures that the final ranking emphasizes minimizing area and
timing overhead (via Bj°™ and S}'°™™) rather than further
prioritizing security.



TABLE III: Ablation study on AES and IBEX. Arrows indicate the direction of change (1 increase, | decrease, — unchanged).

| AES | IBEX
Component PPA / SAT Security Selection Scores PPA / SAT Security Selection Scores
Removed

‘ Area Delay  Security ‘ Boundary B; S; Q; ‘ Area  Delay Security ‘ Boundary B; S; Q;
None ‘ - - v ‘ - - - - - - v ‘ - - - -
Timing Feature |-27.3% +150.1% v ™~ ™M 1T 1 [+27.0% +32.5% v T -
Physical Feature | -2.8%  +1.0% X 1 I 1t 4| +51% -3.0% v 0 T+l -
Timing Loss -3.6% +253.9% v T ™M 1T 1 [430.0% +1.0% v T Tl -
Boundary Loss |-19.2% +188.1% v T T 1T 1 |+251% +21.9% v T T+l -
Security Score | N/A N/A x W Wt 1| Nna N/A x | W Wl

(4) eFPGA synthesis and generation. We use OpenFPGA [41]
together with its default 40nm library for FPGA synthesis
and eFPGA fabric generation. The eFPGA fabric inherently
integrates a scan chain, which allows scan-based testing even
without programming a bitstream.

D. Results

Figure 3 compares the delay and area overheads incurred
by different redacted region selection techniques across all
benchmarks in Table. I. The proposed method consistently
achieves the shortest critical paths. For example, for aes, the
critical path is reduced to 1.33ns, compared to 4.80ns for
SheLL and 3.84ns for ALICE. For riscv32i, the proposed
approach shortens the critical path by up to 1.8x relative to
the baselines. For ibex, it simultaneously achieves the shortest
delay and the smallest area. Even for designs where SheLL
is competitive (jpeg and ethmac), our method still provides
a slight timing advantage. In terms of total area, the proposed
method achieves the lowest overhead for aes, ibex, jpeg,
and riscv32i, while remaining close to the best alternative
for ethmac. In contrast, SheLL can occasionally achieve a
smaller area (ethmac) but at the cost of longer delays. Overall,
these results demonstrate that the proposed method effectively
balances timing and area, outperforming existing techniques
across all evaluated benchmarks.

For all benchmarks and redaction techniques, the SAT-based
attack (Section II-C) always reaches the time limit. While
all techniques offer guaranteed security, the proposed method
stands out by achieving the most favorable trade-off across the
various design objectives.

(a) (b) (©)

Fig. 4: Redacted regions selected by (a) the proposed method,
(b) ALICE, and (c) SheLL on the original layout of AES.

E. Ablation Study

We analyze the impact of removing different feature groups,
loss terms, and selection filters on AES and IBEX (Table III).
e Node features. Timing and physical features provide critical
information for GNN learning and clustering. Removing them
from the feature vector degrades clustering quality, which
in turn results in inferior redaction outcomes. When the
timing feature is removed, gates with worse slack values are
dispersed across groups. Consequently, even with the selection
mechanism (Section III-E), this leads to significant increases
in delay for both benchmarks. Likewise, removing physical
features causes insecure redaction for AES and a 5.1% increase
in area for IBEX.

e Training losses. Loss terms determine node embeddings
generated by the GNN. The timing loss encourages gates with
sufficient slack to have similar embeddings. Delay surges for
AES when this term is removed. The boundary loss encourages
the formation of strongly intra-connected groups while lim-
iting excessive inter-group connections. Removing this term
causes significant delay overhead on both benchmarks.

e Security constraint. Eliminating the security constraint pro-
duces groups that are vulnerable to the SAT-based attack.

These results confirm that node features provide essential
signals for clustering, loss terms enhance clustering quality,
and the security constraint acts as a safeguard against the SAT-
based attack.

V. CONCLUSION

This paper presents a novel approach to select subcircuits
for eFPGA redaction. Using self-supervised GNN training and
clustering, it partitions a circuit into groups, ensuring that
nodes with similar physical locations, slack, and connectivity
have similar representations. The most desirable group is then
selected according to performance, cost, and security crite-
ria. Compared to existing techniques, the proposed method
consistently achieves lower timing and area overheads while
remaining resilient to I/O attacks. Future work includes ex-
tending the approach to large designs and integrating it with
commercial IC design flows.
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